The values of m1 must be interchanged with those of m2 in Table III of [1]. The correct Table III, with the changes marked, is given below.

TABLE III.

Rheological parameters of SPTT-IKH for the fumed silica suspensions by Wei et al. [2] and Armstrong et al. [3].

UnitsFumed silica suspension [2]Fumed silica suspension [3]
G Pa 71.586 766.859 
η0 Pa⋅s 3.519 9.04 
k0 Pa 0.416 3.618 
εPTT - 0.05 0.001 
C0 Pa 0.438 9.613 
q - 2.052 1.815 
k1 s−1 0.00125 0.186 
k2 sn−11 0.00002 0.00037 
k3 sn−12 6.839 0.122 
n1 - 1.844 1.735 
n2 - 2.676 2.141 
n3 - 4.128 2.177 
m1 - 0.484 0.54 
m2 - 0.639 1.607 
m3 - 0.01 0.327 
UnitsFumed silica suspension [2]Fumed silica suspension [3]
G Pa 71.586 766.859 
η0 Pa⋅s 3.519 9.04 
k0 Pa 0.416 3.618 
εPTT - 0.05 0.001 
C0 Pa 0.438 9.613 
q - 2.052 1.815 
k1 s−1 0.00125 0.186 
k2 sn−11 0.00002 0.00037 
k3 sn−12 6.839 0.122 
n1 - 1.844 1.735 
n2 - 2.676 2.141 
n3 - 4.128 2.177 
m1 - 0.484 0.54 
m2 - 0.639 1.607 
m3 - 0.01 0.327 
1.
Varchanis
,
S.
,
G.
Makrigiorgos
,
P.
Moschopoulos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Modeling the rheology of thixotropic elasto-visco-plastic materials
,”
J. Rheol.
63
,
609
639
(
2019
).
2.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
3.
Armstrong
,
M. J.
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol
60
,
433
450
(
2016
).