Polymer melts with long-chain side branches and more than one junction point, such as commercial low density polyethylene (LDPE), have extensional rheology characterized by extreme strain hardening, while the shear rheology is very shear thinning, much like that of unbranched polymers. Working with the tube model for entangled polymer melts, we propose a molecular constitutive equation for an idealized polymer architecture, which, like LDPE, has multiple branch points per molecule. The idealized molecule, called a “pom-pom,” has a single backbone with multiple branches emerging from each end. Because these branches are entangled with the surrounding molecules, the backbone can readily be stretched in an extensional flow, producing strain hardening. In start-up of shear, however, the backbone stretches only temporarily, and eventually collapses as the molecule is aligned, producing strain softening. Here we develop a differential/integral constitutive equation for this architecture, and show that it predicts rheology in both shear and extension that is qualitatively like that of LDPE, much more so than is possible with, for example, the K-BKZ integral constitutive equation.

1.
Ajdari
,
A.
,
F.
Brochard-Wyart
,
P. G.
de Gennes
,
L.
Leibler
,
J. L.
Viovy
, and
M.
Rubinstein
, “
Slippage of an Entangled Polymer Melt on a Grafted Surface
,”
Physica A
204
,
17
39
(
1994
).
2.
Allgaier, J., D. Bick, G. Bishko, N. Clarke, A. Hakiki, R. Heenan, T. C. B. McLeish, D. Read, and R. N. Young, “Neutron-scattering from labelled H-polymer melts,” Rutherford Laboratory Report (Chidcot, 1997).
3.
Ball
,
R. C.
and
T. C. B.
McLeish
, “
Dynamic dilution and the viscosity of star polymer melts
,”
Macromolecules
22
,
1911
1913
(
1989
).
4.
Bernstein
,
B.
,
E. A.
Kearsley
, and
L. J.
Zapas
, “
A theory of stress relaxation with finite strain
,”
Trans. Soc. Rheol.
7
,
391
410
(
1963
).
5.
Bick
,
D. K.
and
T. C. B.
McLeish
, “
Topological contributions to nonlinear elasticity of branched polymers
,”
Phys. Rev. Lett.
76
,
2587
2590
(
1996
).
6.
Bishko
,
G.
,
O. G.
Harlen
,
R. G.
Larson
, and
T. C. B.
McLeish
, “
Molecular constitutive equations for branched polymers in complex flows
,”
Phys. Rev. Lett.
79
,
2452
2355
(
1997
).
7.
Cates
,
M. E.
, “
Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers)
,”
J. Phys. Chem.
94
,
371
375
(
1990
).
8.
Colby
,
R. H.
and
M.
Rubinstein
, “
Two-parameter scaling for polymers in theta-solvents
,”
Macromolecules
23
,
2753
2757
(
1990
).
9.
Currie, P. K., Calculations on the Doi-Edwards Model for Concentrated Polymer Systems, in Rheology, Proceedings of the Ninth International Congress on Rheology, Acapulco, Mexico, 1984.
10.
Doi, M. and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).
11.
Einaga
,
Y.
,
K.
Osaki
,
M.
Kurata
,
S.
Kimura
, and
M.
Tamura
, “
Stress relaxation of polymer solutions under large strain
,”
Polymer
2
,
550
552
(
1971
).
12.
Feigl
,
K.
,
M.
Laso
, and
H.-C.
Öttinger
, “
CONNFFESSIT approach for solving a 2-dimensional viscoelastic fluid problem
,”
Macromolecules
28
,
3261
3274
(
1995
).
13.
Fetters
,
L. J.
,
A. D.
Kiss
,
D. S.
Pearson
,
G. F.
Quack
, and
F. J.
Vitus
, “
Rheological behaviour of star-shaped polymers
,”
Macromolecules
26
,
647
654
(
1993
).
14.
Helfand
,
E.
and
D. S.
Pearson
, “
Viscoelastic Properties of Star Polymer Melts
,”
Macromolecules
17
,
888
895
(
1984
).
15.
Hinch
,
E. J.
and
L. G.
Leal
, “
Constitutive equations in suspension mechanics. Part. 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations
,”
J. Fluid Mech.
76
,
188
208
(
1976
).
16.
Kaye, A., Non-Newtonian Flow in Incompressible Fluids (College of Aeronautics Press, Cranford, U.K., 1962), Note No. 134.
17.
Larson
,
R. G.
, “
A critical comparison of constitutive equations for polymer melts
,”
J. Non-Newtonian Fluid Mech.
23
,
249
269
(
1987
).
18.
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston, 1988).
19.
Laun
,
H. M.
, “
Description of the non-linear shear behavior of a low-density polyethylene melt by means of a strain-dependent memory function
,”
Rheol. Acta
17
,
1
15
(
1978
).
20.
Laun, H. M., Proceedings of the Ninth International Congress on Rheology, Acapulco, Mexico, 1984.
21.
Laun
,
H. M.
and
H.
Schuch
, “
Transient elongational viscosities and drawability of polymer melts,”
J. Rheol.
33
,
119
175
(
1989
).
22.
McLeish
,
T. C. B.
, “
Molecular rheology of H-polymers
,”
Macromolecules
21
,
1062
1069
(
1988
).
23.
McLeish
,
T. C. B.
, “
On the trail of topological fluids
,”
Physics World
8
,
32
35
(
1995
).
24.
McLeish
,
T. C. B.
and
K. P.
O’Connor
, “
Rheology of star-linear polymer blends: Molecular tube models
,”
Polymer
34
,
2998
3001
(
1993
).
25.
Milner
,
S. T.
and
T. C. B.
McLeish
, “
Parameter-free theory for stress relaxation in star polymer melts
,”
Macromolecules
30
,
2159
2166
(
1997
).
26.
Meissner
,
J. M.
, “
Modification of the Weissenberg Rheogoniometer for measurements of transient rheological properties of molten polyethylene under shear, Comparison with tensile data
,”
J. Appl. Polym. Sci.
16
,
2877
2899
(
1972
).
27.
Meissner, J., Proceedings of the XIIth International Congress on Rheology, Quebec City, 7–10 (1996).
28.
Pearson
,
D. S.
,
E.
Herbolzheimer
,
N.
Grizzuti
, and
G.
Marrucci
, “
Transient behavior of entangled polymers at high shear rates
,”
J. Polym. Sci. B: Polym. Phys.
29
,
1589
1597
(
1991
).
29.
Roovers
,
J.
, “
Rheology of some H-shaped polystyrenes
,”
Macromolecules
17
,
1196
1200
(
1984
).
30.
Samurkas
,
T.
,
R. G.
Larson
, and
J. M.
Dealy
, “
Strong extensional and shearing flows of a branched polyethylene
,”
J. Rheol.
33
,
559
578
(
1989
).
31.
Semenov, A. N., in Theoretical Challenges in the Dynamics of Complex Fluids, edited by T. C. B. McLeish (Kluwer, Dordrecht, 1997).
32.
Tanner, R. I., Engineering Rheology (Oxford University Press, New York, 1985).
33.
Vega
,
J. F.
,
A.
Munoz-Escalona
,
A.
Santamaria
,
M. E.
Munoz
, and
P.
Lafuente
, “
Comparison of the rheological properties of metallocene-catalysed and conventional high-density polyethylenes
,”
Macromolecules
29
,
960
965
(
1996
).
34.
Wagner
,
M. H.
and
H. M.
Laun
, “
Non-linear shear creep and constrained elastic recovery of a LDPE melt
,”
Rheol. Acta
17
,
138
148
(
1978
).
35.
Wagner
,
M. H.
,
T.
Raible
, and
J.
Meissner
, “
Tensile stress overshoot in uniaxial extension of a LDPE melt
,”
Rheol. Acta
18
,
427
428
(
1979
).
This content is only available via PDF.