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Abstract

To predict the complex transient rheology of thixotropic elasto-viscoplastic (TEVP) fluids, we generalize a previous scalar thixotropic-only

“multilambda” (ML) model [Wei et al., J. Rheol. 60(6), 1301–1315 (2016)] and combine it with the isotropic kinematic hardening (IKH)

model [C. J. Dimitriou and G. H. Mckinley, Soft Matter 10(35), 6619–6644 (2014)]. This new constitutive equation, which we call ML-IKH

model, has the following features: (1) Multiple thixotropic structure parameters that collectively exhibit a stretch-exponential thixotropic

relaxation in step tests; (2) nonlinear thixotropic kinetic equations in both the shear rate or stress and the structure parameters; (3) incorpora-

tion of the Armstrong-Frederick kinematic hardening rule [C. O. Frederick and P. Armstrong, Mater. High Temp. 24(1), 1–26 (2007)] for the

evolution of yield stress; and (4) viscoelasticity. We evaluate this 12-parameter model, discuss its four key features, and compare its predic-

tions with those of the ML, IKH, and modified Delaware thixotropic models [Armstrong et al., J. Rheol. 60(3), 433–450 (2016)] for two sets

of experimental data [Wei et al., J. Rheol. 60(6), 1301–1315 (2016); Armstrong et al., J. Rheol. 60(3), 433–450 (2016)] of a TEVP fumed sil-

ica suspension. The shear-rate histories include steady state, step shear rate, step stress, intermittent shear, flow reversal, and large amplitude

oscillatory shear (LAOS). We show that in step tests the thixotropic and viscoelastic evolutions are dominant, while intermittent shear tests

the multiple thixotropic timescales, and flow reversal tests the viscoelastic and plastic evolutions. The rheological responses in LAOS tests

are more complex and involve all aspects of TEVP rheology. The four features quantitatively capture different aspects of TEVP rheology.

We also provide a tensorial formulation of the ML-IKH model that is frame-invariant, obeys the second law of thermodynamics, and can

reproduce the predictions of the scalar version. VC 2017 The Society of Rheology. https://doi.org/10.1122/1.4996752

I. INTRODUCTION

Many complex fluids exhibit flow-sensitive rheological

properties due to flow-induced changes of internal structures

[1–3]. Complex fluids with weakly aggregated internal struc-

tures often display thixotropy, defined as a flow-induced

reversible time-dependent shear-thinning (or sometimes

thickening) viscous response [4–6]. The shear thinning is

produced by deformation and breakage of internal structures

under flow. Because of Brownian motion or interactions that

induce relative motion of particles [4], the microstructure

can rebuild as flow decreases or stops, and, in some cases,

form a space-filling structure network. In these systems, the

deformation of the structure may store and release elastic

energy before breaking, which gives rise to viscoelasticity as

well as thixotropy. The system also exhibits a yield stress if

the space-filling structural networks can withstand a modest

stress without breaking or continuously deforming. Most

thixotropic fluids also simultaneously show both viscoelas-

ticity and yield stress [7,8], making it difficult to develop

accurate constitutive equations for them. Such a complex

rheological response is often referred to as “thixotropic

elasto-viscoplastic” (TEVP) [8].

Thixotropic fluids are very common and include blood

[9], paints [10], adhesives [11], concrete [12], personal care

products [13,14], waxy crude oil [15], food materials

[16–18], and weakly flocculated colloidal suspensions

[19–23]. The rheology of these fluids plays a key role in the

design of processing flows, the development of products

with a tailored thixotropic response, and the general study

of microstructure-rheology relationships in soft matter.

A thixotropic constitutive model usually contains both an

equation for the stress tensor and an auxiliary equation for

the time evolution of one or more (usually scalar) structure

parameters. For example, the models in [15,24–28] introduce

a structure parameter k that varies between zero and one,

representing, respectively, a completely broken-down state

and a fully structured one. (Some authors [29,30] use fluidity

as the structure parameter, which has an inverse relationship

to the size or strength of the structure.)

Most models use empirical relationships to link the struc-

ture parameter with bulk rheological properties. For exam-

ple, the assumption of a linear dependence of viscosity and

yield stress on k is common. Others assume a specific micro-

structural physical picture and define the structure parameter

and rheological properties based on physical modeling. For

example, the relationship between viscosity and the effective

floc volume fraction has been adopted in [31,32].

As discussed in the recent review [8], TEVP materials

show complex rheology due to the coexistence of thixot-

ropy, viscoelasticity, and plasticity. They show distinct

rheological behaviors in test conditions with different

amplitudes of strain, strain rate, and stress; and different

timescales of thixotropic, viscoelastic, and plastic evolu-

tion. Previous thixotropic models, nevertheless, have
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focused on only limited test conditions. Although they

achieve success in predicting certain tests, they usually

lack the applicability in capturing the complex TEVP rhe-

ology. For example, our previous thixotropic-only multi-

lambda (ML) model [33] successfully captures the

nonlinear and stretched-exponential thixotropic evolution,

but it lacks the component of viscoelasticity and therefore

gives poor predictions in transient tests when the shear rate

is small. The isotropic kinematic hardening (IKH) model

shows good agreement with the rheology of waxy crude

oils in several hysteresis tests, shear start-up tests, and

large amplitude oscillatory shear (LAOS) tests. However, a

comprehensive examination of the IKH model in other rhe-

ological experiments is lacking. The modified Delaware

thixotropic (MDT) model was examined in a range of

step-shear-rate tests, flow reversal tests, and LAOS tests. It

successfully captures several important features of TEVP

rheology including elastic stress contribution in steady

state, thixotropic buildup and breakdown, and viscoelastic-

ity in LAOS tests. But it lacks the feature of multiple thixo-

tropic time scales, which is important to accurately predict

the thixotropic response; it also shows poor predictions in

flow reversal tests and some LAOS tests.

Still lacking, therefore, is a comprehensive model that can

give quantitative predictions over wide-ranging test condi-

tions. Developing such a robust model would be important in

applications that may involve all the above-mentioned or

more complex flow conditions. Another limitation of the

available thixotropic models is that they are written mainly

in scalar forms and are therefore directly applicable only to

simple shear flows. The relatively few [15,34–36] that have

been written in tensorial form have for the most part not

been tested against experimental results. Thus, a well-tested,

quantitative tensorial constitutive model for thixotropic flu-

ids is currently lacking.

This work takes some steps to fill this gap. In Sec. II, we

review and discuss four critical attributes that TEVP models

should possess. Then in Sec. III, we introduce the ML-IKH

model for TEVP fluids. We present the model in both a sca-

lar and a tensorial form, the latter of which is in Eulerian

form, frame-invariant, and compliant with the second law of

thermodynamics. We outline the procedure for model param-

eterization in Sec. IV. And in Sec. V, we test the proposed

model, in comparison with the ML, IKH, and MDT models,

over a wide range of simple shearing flows, including steady

state shear, unidirectional step tests, intermittent step tests,

flow reversal tests, and LAOS tests. (We leave tests under

nonshearing kinematics to the future.) We discuss the model

components that are critical to successful prediction of those

rheological tests. In Sec. VI, we discuss advantages of the

tensorial model. We finally summarize the results and dis-

cussion in Sec. VII.

II. THEORETICAL OVERVIEW

A. Predicting ideal thixotropy

In structural kinetics models of thixotropy, a structure

parameter, usually denoted as k, is introduced to indicate the

instantaneous degree of “structure.” The constitutive rela-

tionship between stress and the rate of deformation is param-

eterized by k whose rate of change is assumed to be a

function of the instantaneous flow condition and k itself.

While almost all thixotropic fluids exhibit viscoelasticity and

yield stress, their rheological behavior is close to that of

purely viscous thixotropic fluids when the shear rate is suffi-

ciently large.

As discussed in our previous work [33], a simple and gen-

eral model of ideal thixotropy is

r ¼ KðkÞ _ca; (1)

dk
dt
¼ �k1/

akn þ k2/
b 1� kð Þm þ k3 1� kð Þm: (2)

Here, r denotes the shear stress, _c the shear rate, a the order

of dependence of stress on shear rate, K(k) the coefficient

which is an increasing function of k. k1, k2, and k3 are, respec-

tively, the rate coefficients of the break-down term, the shear-

induced build-up term, and the Brownian build-up term; a
and b are the orders of the dependence of the first two of

these terms on the flow parameter /; and n and m are the

orders of the dependence of k in the break-down term and

build-up terms. The “flow parameter,” /, can be shear rate,

shear stress, or a combination of both. A summary of repre-

sentative kinetic equations can be found in the review [4].

Most thixotropic models assume linear relationships

between K(k) and k, r and _c, dk/dt and k. Such linear thixo-

tropic models predict that k, and therefore r, respond expo-

nentially to step changes in / (assumed to be _c in most

cases). However, experimental results [33,37,38] show that

thixotropic relaxation often follows a stretched exponential

function. In addition, monolambda thixotropic models in the

form of Eqs. (1) and (2) predict that k, if initially out of equi-

librium, always relaxes monotonically to its steady-state

value when the shear rate or stress is constant, regardless of

any prior shear history. Consequently, the stress, viscosity,

and/or shear rate evolve monotonically. However, nonmono-

tonic thixotropic relaxation has been observed at constant

shear rate, if this constant shear rate follows a previous mul-

tistep flow history. Such nonmonotonicity indicates the coex-

istence of multiple time scales of thixotropic relaxation that

single-lambda thixotropic models fail to predict [33].

We previously developed the ML approach [33] to incor-

porate a spectrum of structure parameters into single-lambda

thixotropic models at the cost of only one additional model

parameter. This approach starts by writing k as a linear com-

bination of a spectrum of “substructure-parameters,” ki

k ¼
XN

i¼1

Ciki; (3)

where Ci is the coefficient ki and N is the number of thixotro-

pic relaxation modes. Equation (2) is replaced by the kinetic

equation of each ki

dki

dt
¼ Di �k1/

aki
n þ k2/

b 1� kið Þm þ k3 1� kið Þm
� �

: (4)
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According to Eq. (4), all ki have the same steady-state

value as k in Eq. (2) at the same shear rate or stress; how-

ever, their time derivatives differ and are set by the dimen-

sionless prefactor Di. Equations (3) and (4) imply that the

thixotropic evolution can be divided into multiple indepen-

dent modes with different relaxation times. Equations (3)

and (4) reduce to Eq. (2) if only a single mode (N¼ 1) is

included and both fCig and fDig have only a single ele-

ment of unity.

To account for the stretched exponential thixotropic evo-

lution in single step tests, we assume that the thixotropic

relaxation times follow a stretched exponential distribu-

tion—the fCig and fDig are chosen to satisfy the following

relationship:

expð�tbÞ �
XN

i¼1

CiðbÞe�Dit; (5)

where b is the stretching exponent, 0< b< 1. Equation (5)

shows the decomposition of a stretched exponential function

into a linear combination of simple exponentials. This

decomposition is, by itself, a numerical problem and is inde-

pendent of other equations in this model. It requires the input

of b and outputs the values of N, fCig, and fDig. Thus, b is

the only additional model parameter accounting for the

stretched exponential thixotropic evolution. For a given b, N,

fCig, and fDig are determined through the following proce-

dure. First, the user specifies N based on the requirement of

the approximation. N sets the resolution of the decomposi-

tion. To achieve a certain level of approximation, the smaller

b is, the larger N needs to be. b¼ 1 indicates a simple expo-

nential (N¼C¼D¼ 1). Second, fDig is generated contain-

ing N modes with a range of relaxation times. Last, the

optimal fCig is calculated to best approximate the stretched

exponential. Details regarding this decomposition (the math-

ematical background, the algorithm for calculating Ci and

Di, the influence of the choice of N and Di) can be found

in our previous work [33]. An improved subroutine to per-

form this decomposition is provided in the supplementary

material [39].

B. Incorporation of viscoelasticity into thixotropic
models

Many thixotropic fluids are simultaneously viscoelastic.

Viscoelasticity manifests itself in step-shear-rate tests where

the stress may first exhibits an instantaneous jump, followed

by a relatively fast (viscoelastic) relaxation that subsequently

transitions to a slower (thixotropic) one in the opposite direc-

tion. For example, upon a stepwise increase of shear rate,

stress may jump up instantly, increases toward a maximum

and then gradually decays to a plateau higher than its initial

steady-state value. The contribution of elastic stress to the

total stress can be directly measured in flow cessation tests

where flow suddenly stops after a period of preshear [40].

The residual stress that does not instantly vanish when shear

ceases is the elastic stress.

Thixotropic models need to incorporate viscoelasticity to

capture such behaviors. Figure 1 is a summary of

representative approaches. Figure 1(a) is derived from the

Bingham model, with the viscosity written as a function of k,

and the yield stress replaced with an elastic stress (re) that is

a function of both k and �ce. �ce is a strainlike structure param-

eter. An additional kinetic equation is needed to describe the

evolution of �ce. Examples of constitutive equations of the

type of Fig. 1(a) are the models of Mujumdar et al. [26], and

Dullaert and Mewis [27].

Figure 1(b) is derived from the Maxwell model by assum-

ing a k-dependent viscosity, gðkÞ, and/or modulus, GðkÞ,
each of which contributes to the strain, c, which is additively

divided into the viscous and elastic strains, cv and ce, respec-

tively. Examples of models of this form were proposed by

Labanda and Llorens [41], de Souza Mendes [42], and

Dimitriou and McKinley [15]. Figure 1(c) is derived from

the Oldroyd-B (or Jeffreys) model, in that it contains a paral-

lel viscous Newtonian stress that is structure independent,

along with the structure-dependent viscoelastic Maxwell

component. Examples are the models of de Souza Mendes

and Thompson [43], Blackwell and Ewoldt [44], and the

model in this work. Figure 1(d) is a hybrid of the Bingham-

and Maxwell-type models which assumes an additive

decomposition of both stress and strain. The elastic stress is

a function of the elastic strain; and the viscous stress is a

function of the viscous shear rate, with both also functions of

k. Examples are the models of Armstrong et al. [24] and

Mwasame et al. [31].

In this work, we propose a model in the form of Fig. 1(c),

which naturally captures the following rheological features

resulting from viscoelasticity: (1) An instantaneous stress

jump when the shear rate undergoes a stepwise change,

which arises from the medium viscosity gm, (2) a continuous

but fast initial elastic relaxation resulting from the spring-

dashpot element containing G and g, and (3) a slower

FIG. 1. Schematics of four representative forms of incorporating viscoelas-

ticity into thixotropic models: (a) Bingham-type model with yield stress

replaced by an elastic stress; (b) Maxwell-type model with k-dependent

modulus and/or viscosity; (c) Oldroyd-type model with stress contribution

from the medium and internal structures; (d) a hybrid of the Bingham- and

Maxwell-type models. In each branch, the dotted line indicates the portion

of the strain that does not affect the stress.
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thixotropic relaxation in the direction opposite to that from

the elastic relaxation in step-shear-rate tests, which results

from the k-dependence of G and g. There is also a gradual,

but fast, decaying residual stress after cessation of shear,

resulting from the spring-dashpot element.

C. Kinematic hardening

“Kinematic hardening” during yielding is commonly

invoked to account for the Bauschinger effect [49] that

many materials, especially metals, exhibit [45–49]. The

Bauschinger effect refers to an anisotropic yield stress result-

ing from plastic deformation. Kinematic hardening models

describe this phenomenon through a changing yield surface,

the center of which moves as plastic deformation occurs,

such that the material becomes harder to deform (exhibits a

larger yield stress) in the direction of past deformation, but

easier to deform in the reverse direction.

While extensively employed in the plasticity literature,

kinematic hardening has only been recently introduced into

thixotropic modeling, by Dimitriou and McKinley [15].

Their IKH model incorporates a modified Armstrong-

Frederick kinematic hardening rule [49] into a Maxwell-type

thixotropic model. This kinematic hardening component

was found to be critical to the ability of the IKH model to

predict the dynamic rheology of a waxy crude oil in LAOS

tests [15].

The Armstrong-Frederick kinematic hardening rule is

widely used in the limit of small strains to model the

Bauschinger effect. Incorporating the Armstrong-Frederick

kinematic hardening rule into the Bingham model gives Eqs.

(6)–(9). First, a back stress (rback) is introduced. Here, A is a

structure parameter often called the “back strain”; and kh is a

constant coefficient

rback ¼ khA: (6)

Equation (7) describes the evolution of A

dA

dt
¼ _c � qAj _cj; (7)

where q is a material constant. Equation (7) implies that A is

determined solely by the strain histories. rback is equivalent

to an elastic stress and A an elastic strain when q¼ 0. Next,

Eq. (8) defines the effective stress (reff ) and Eq. (9) gives the

relationship between _c and reff .

reff ¼ r� rback; (8)

_c ¼
0 if jreff j < ky

sign reffð Þ �
jreff j � ky

g
if jreff j � ky;

8><
>: (9)

where ky is the yield stress in the initial undeformed state

where A¼ 0 and g is the plastic viscosity.

The Armstrong-Frederick kinematic hardening rule intro-

duces a varying yield surface. Initially in the undeformed

state where A¼ 0, the yield surface in stress space is

½�ky; ky�. As strain occurs and A evolves toward the direction

of strain, the yield surface moves to ½�ky þ khA; ky þ khA�.
The yield stress in the direction of deformation therefore

increases and that in the opposite direction decreases. This

model reduces to the Bingham model if kh¼ 0. Equation (9)

can be further generalized, giving Eq. (10) [50].

dA

dt
¼ _c � qjAjð Þmsign Að Þj _cj: (10)

The above equation reduces to the original Armstrong-

Frederick equation when m¼ 1. As reported by Dimitriou

and McKinley [15], this modification is important in predict-

ing the dynamic rheology of waxy crude oils (m¼ 0.25). We

find m¼ 1 is in good agreement with the rheology of the

fumed silica suspension.

In this work, we introduce the Armstrong-Frederick kine-

matic hardening rule into the proposed model and test it against

the rheological response of a model thixotropic fluid [23], a

weakly aggregated fumed silica suspension. We show that the

kinematic hardening rule is critical to predicting the rheology

of this fluid in flow reversal tests, LAOS tests, and other com-

plex flow histories involving a changing deformation direction.

III. PROPOSED MODEL

Section II discussed four important aspects of modeling

the rheology of TEVP fluids, namely: (1) Multiple thixotro-

pic structure parameters, (2) nonlinear thixotropic evolution

equations, (3) viscoelastic model components, and (4) a yield

stress with kinematic hardening. In this section, we introduce

the ML-IKH model which includes these four aspects. (In

comparison, the ML model includes only aspects 1 and 2;

the IKH model contains only aspects 3 and 4; and the MDT

model only has aspect 3.) This model generalizes our previ-

ous ML “ideal thixotropic model” [33] by amalgamating it

with the IKH model [15], and making some additional modi-

fications, as discussed shortly. We propose the model in both

scalar and tensorial forms.

A. Scalar form

The total stress is composed of contributions from the

medium (rm) and from internal structures (rs)

r ¼ rm þ rs: (11)

In this work, we consider only thixotropic suspensions with

a Newtonian continuous phase. Assuming that the system

has a constant viscosity of gm when all internal structures are

broken, we write rm as follows:

rm ¼ gm _c: (12)

As a common assumption in elasto-viscoplastic models

[15,24,51], the total shear strain is additively decomposed

into the elastic strain (ce) and plastic strain (cp)

c ¼ ce þ cp () _c ¼ _ce þ _cp: (13)
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Here, ce represents the elastic deformation of the internal

structures and cp represents the plastic distortion caused by,

for example, the relative movement of internal structures

with respect to the medium. _ce and _cp are, respectively, the

elastic and plastic strain rate. We assume linear elasticity

and a constant modulus, taking rs is proportional to ce

rs ¼ Gce: (14)

Next, we introduce the equations determining _cp. _cp can

be written as the product of its sign (np) and its absolute

value (j _cpj)

_cp ¼ npj _cpj: (15)

Here, np indicates the direction of the plastic deformation

while j _cpj is the magnitude of its rate. Both np and j _cpj are

determined by reff. Slightly different from Eq. (8), here reff

is defined as

reff ¼ rs � rback: (16)

As is common in plasticity theory [52], we assume that

the plastic deformation is codirectional with the effective

stress, i.e.,

np ¼ signðreffÞ: (17)

j _cpj is determined as follows:

j _cpj ¼
0 if jreff j < kky

jreff j � kky

kgthi

if jreff j � kky

8><
>: (18)

where gthi is the plastic viscosity.

Equations (11)–(18) can be written in a compact form as

follows:

kh _rs þmax 0;
jreff j � kky

jreff j

� �
reff ¼ kgthi _c; (19)

where h ¼ gthi=G is the viscoelastic relaxation time in the

fully structured state. Notice that when ky ¼ 0, kh ¼ 0, and k
is removed from this model (by setting k ¼ 1), this model

reduces to the Jeffrey model; when h ¼ 0, kh ¼ 0, and k is

absent, this model reduces to the Bingham model.

We next introduce the evolution equations for A and k to

complete this model. Equation (7) is modified to relate the

evolution of back strain to the plastic strain rate

_A ¼ _cp � qAj _cpj: (20)

Following the ML approach, Eqs. (3)–(5) are incorporated to

describe the evolution of k.

It has been shown [24,27,33,53] that the thixotropic

build-up rate is linear in k (m¼ 1) if a linear relationship

between k and viscosity or yield stress is adopted. Previous

studies [27,33] in addition show that the flow-induced aggre-

gation rate has a square-root dependence (b¼ 0.5) on the

shear rate or stress. This relationship is based on the theoreti-

cal study of van de Ven and Mason [54] concerning the

effect of shear flow on the aggregation kinetics of colloidal

dispersions at low Peclet numbers. The build-up terms with

m¼ 1 and b¼ 0.5 were first adopted by Dullaert and Mewis

[27] and used by Wei et al. [33].

The parameters a and n in the break-down term of Eq. (4)

are two adjusting model parameters. The nonlinearity of ki in

the breakdown term captures the positive correlation

between the thixotropic relaxation times and the initial shear

rate or stress in step tests, which improves model predictions

in these tests. The best-fit value of n depends on the choice

of / (i.e., stress or shear rate) and can be experimentally

determined from the fast response in shear start-up tests at

large shear rates or stress [33]. In our previous work, Eq. (4)

was written in either a stress-controlled (SC) form (/¼r) or

a rate-controlled (RC) one (/¼ _c). In the ML-IKH model,

with the assumption that thixotropy occurs only upon plastic

deformation, / is written as follows:

SC form : / ¼ maxð0; jreff j � kkyÞ
RC form : / ¼ j _cpj:

(
(21)

The above equation states that k does not decrease within the

yield surface where _cp ¼ 0 and jreffj � kky, and changes in

the elastic deformation do not lead to the breakage of internal

structures. It is the large and irreversible deformation (i.e.,

the plastic deformation) that causes thixotropic response.

This distinction between reversible elastic strains and irre-

versible plastic ones, and the dependence of thixotropy only

on the latter, are also adopted in the IKH and MDT models.

Note that the RC and SC forms are two similar but differ-

ent models. They make different constitutive assumptions

about how flow conditions influence the thixotropic kinetics.

We refer the readers to [55] for a conceptual discussion

about the choice of flow parameters, and [56] for a numerical

comparison between different choices. A third option based

on energy consideration has also been adopted [57,58].

A mechanical analog can be drawn for the proposed

model, as shown in Fig. 2. Prior to yielding, _cp ¼ 0 and this

model behaves as a Kelvin-Voigt viscoelastic solid. Upon

yielding, the model predicts a Jeffreys-type viscoelastic

behavior with a yield stress in unidirectional shearing given

by kky þ khA and in the opposite direction of �kky þ khA.

As k decreases, the yield surface shrinks and the viscoelastic

relaxation time (kgthi=G) decreases. In limit of _c ¼ þ1 and

k ¼ 0, this model reduces to a Newtonian fluid with a viscos-

ity of gm.

B. Tensorial form

In this section, we present the tensorial formulation of the

proposed model that can be used in arbitrary 3D flow histo-

ries. We write the model in the Eulerian form based on an

additive decomposition of the rate of deformation tensor.

Compared with the Lagrangian form that is based on the

multiplicative decomposition of the deformation gradient

tensor, and therefore requires the definition of a fixed refer-

ence state with respect to which total strain is defined, the
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Eulerian form is more suitable for most fluid flow simula-

tions of thixotropic materials. In addition, we assume that

the elastic deformation is small while the plastic deformation

and rotation might be large. This assumption greatly simpli-

fies the tensorial constitutive equations and is valid for

weakly aggregated thixotropic suspensions in which the

internal structures can withstand only small elastic strains

before breaking.

As in Eq. (11), the total extra stress tensor (s) is divided

into contributions from the medium (sm) and from the inter-

nal structure (ss), with sm proportional to the rate of deforma-

tion tensor (D)

s ¼ sm þ ss; (22)

sm ¼ 2gmD: (23)

Here, D is the sum of its elastic and plastic components (De

and Dp)

D ¼ De þ Dp: (24)

Below, Eq. (25) expresses ss in a differential and frame-

invariant form. “�” denotes the upper-convected time

derivative

s
r
s ¼ 2GDe: (25)

Its operation on an arbitrary tensor, S, is defined in Eq. (26).

Here, the overdot denotes the material time derivative, the

superscript “T” means transpose, and rv is the velocity gra-

dient tensor

S
r
¼ _S � ðrvÞT � S� S � ðrvÞ: (26)

The effective stress tensor (seff), the counterpart of reff in the

1D model, is defined as

seff ¼ ss � jback (27)

where jback is an intermediate variable that depends on the

back stress tensor (sback ¼ khA) according to Eq. (28).

jback ¼ sback þ
2

kh

s2
back ¼ kh Aþ A2ð Þ: (28)

Here, A is the 3D generalization of the scalar kinematic

hardening parameter, A. jback is introduced to avoid the

aphysical oscillation of A in simple shear flows (see details

in Sec. VI B). This method was first proposed by Tsakmakis

[59] in his finite plasticity model.

Assuming the von Mises yield criterion, the 3D generali-

zation of the plastic flow rule in Eqs. (15)–(18) are written as

follows:

Dp ¼
0 if �r < kky

�r � kky

� �
2kgthi

� seff

�r
if �r � kky

8><
>: (29)

where �r is the equivalent shear stress, defined as

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sD

eff : sD
eff

2

r
: (30)

The superscript “D” means the deviatoric part of the tensor;

e.g., sD
eff ¼ seff � traceðseffÞd=3, where d is the unit tensor.

The “:” denotes the scalar product (or double dot product) of

two tensors.

The tensorial equivalent of Eq. (19) is written as

kh s
r

s þmax 0;
�r � kky

�r

	 

seff ¼ 2kgthiD (31)

where again h ¼ gthi=G is the viscoelastic relaxation time in

the fully structured state. The evolution equation for A is

given by

A
o ¼ Dp � Aþ A � Dp þ Dp � qdpA: (32)

FIG. 2. Mechanical analog of the proposed model.
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Here, A is symmetric and equals to the zero tensor in the ini-

tial undeformed state. This kinetic equation satisfies the sec-

ond law of thermodynamics and does not bring aphysical

oscillation in simple shear flows (see Sec. VI B for further

discussion). The “o” over A denotes the Jaumann derivative.

Its operation on an arbitrary tensor, S, is defined as

S
o ¼ _S þW � S� S �W: (33)

Here, W ¼ ð$v� ð$vÞTÞ=2 is the vorticity tensor. dp is the

magnitude of Dp, defined as

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp : Dp

2

r
: (34)

The expression for k and the kinetic equation for ki are

the same as those in the scalar model except that the flow

parameter / is now written as a function of �r or dp, as shown

in Eq. (35). / is therefore a scalar isotropic function of seff

or Dp and therefore independent of an arbitrary rotation

imposed on the frame.

SC form : / ¼ maxð0; �r � kkyÞ
RC form : / ¼ 2dp:

	
(35)

C. Summary of the proposed model

Table I is a summary of the proposed model, which has

12 parameters. (In comparison, the thixotropic only ML

model has nine parameters, the IKH model has eight, and the

MDT model has 13, cf. Table III.) The parameters governing

the relationship between stress and shear rate at steady state

are a, n, kh, ky, k1=k3, k2=k3, gthi, and gm.

The scalar model predicts that the values of A, k, and r at

steady state are as follows:

Ass ¼
sign _cð Þ

q
(36)

kss ¼ f _c; a; n;
k1

k3

;
k2

k3

� �
(37)

rss ¼ sign _cð Þ kh

q
þ kssky

� �
þ kssgthi þ gmð Þ _c: (38)

The function f in Eq. (37) represents the solution of Eq. (4)

at steady state where dki=dt ¼ 0 for all ki.

The parameters governing the transient response are k3, b,

q, and G. k3 directly influences the time scale of thixotropic

relaxation. b determines the extent of deviation from single

exponential relaxation. For b ¼ 1, the stretched-exponential

reduces to a single exponential and only a single ki is

needed, which reduces the model to a single-lambda model.

q determines the plastic strain at which A reaches steady

state. gthi=G governs the time scale of the viscoelastic

relaxation.

The model reduces to several different models in certain

limits, as described in Table II.

D. Qualitative comparison with the ML, IKH,
and MDT models

We first qualitatively compare the ML-IKH model with

the ML, IKH, and MDT models. Table III is a summary. As

reviewed in Sec. II, TEVP materials behave like viscoelastic

solids before yielding and viscoelastic fluids after yielding.

Moreover, their response approaches ideal thixotropy at high

shear rates (where the required shear rate level may differ in

TABLE I. Summary of the proposed model.

Scalar constitutive equations Tensorial constitutive equations

r ¼ gm _c þ rs s ¼ 2gmDþ ss

kh _rs þmax 0;
jreff j�kky

jreff j

� �
reff ¼ kgthi _c kh s

r
sþmax 0;

�r � kky

�r

	 

seff ¼ 2kgthiD

reff ¼ rs � rback seff ¼ ss � jback

rback ¼ khA jback ¼ sback þ 2s2
back=kh; sback ¼ khA

_cp ¼
0 if jreff j < kky

jreff j � kky

kgthi

� sign reffð Þ if jreff j � kky

8><
>: Dp ¼

0 if �r < kky

�r � kky

� �
2kgthi

� seff

�r
if �r � kky

8><
>:

_A ¼ _cp � qAj _cpj A
o ¼ Dp � Aþ A � Dp þ Dp � qdpA

SC form : / ¼ maxð0; jreff j � kkyÞ
RC form : / ¼ j_cpj

(
SC form : / ¼ maxð0; �r � kkyÞ
RC form : / ¼ 2dp

(

k ¼
XN

i¼1

Ciki

dki

dt
¼ Di �k1/

aki
n þ k2/

0:5 1� kið Þ þ k3 1� kið Þ
� �

exp ð�tbÞ �
XN

i¼1

CiðbÞ�e�Dit

Model parameters (12 in total):
governing steady state : a; n; ky;

kh

q
;
k1

k3

;
k2

k3

; gm; gthi

controlling transient response : k3;b; q; G

327A MULTILAMBDATEVP MODEL

 19 April 2024 16:11:35



different systems. For the fumed silica suspensions reported

in [24,33,40], _c > 5 s�1). The thixotropic relaxation has mul-

tiple time scales and follows a stretched exponential in step

tests. In general step-shear-rate tests, the stress exhibits an

instant jump, followed by a fast elastic relaxation with an ini-

tial extremum and a subsequent slow thixotropic relaxation.

The ML, IKH, and MDT models predict only partially these

rheological behaviors. All four models fail to predict the

delayed yielding behavior that some TEVP materials exhibit.

We refer the readers to [43,60–62] for models that address

the delayed yielding phenomenon.

E. Physical interpretation of structure parameters

In the ML-IKH model, {ki}, A, and ce account phenome-

nologically for, respectively, the instantaneous degree of

structures (in the isotropic sense), characteristic orientation,

and elastic deformation of the internal structures. In single-

lambda thixotropic models, the structure parameter k is often

interpreted as the instantaneous number of links (or other

structural units) normalized by the maximum number in a

fully structured state [25,63]. As a first approximation, it is

assumed that all links have the same strength and break or

form at the same rate. Most thixotropic models assume a

first-order mechanism of the breakage, which results in a lin-

ear kinetic equation for k. The use of a set of {ki} is a gener-

alization of such description. We envision {ki} as the

relative numbers of internal links of different types specified

by their relative rates of breakage or formation (the Di val-

ues). The yield stress and viscosity are related to the linear

combination of ki with the weights following a stretched

exponential distribution.

As discussed in [15,64], A quantifies the level of structural

anisotropy, or characteristic orientation of internal structures,

which gives rise to the back stress. A¼ 0 implies randomly

orientated microstructures and A¼ 1/q gives the steady-state

anisotropic orientation in simple shear flows. In 3D deforma-

tions, the scalar parameter A is replaced by the tensor

TABLE III. Qualitative comparison of the ML, IKH (scalar form), MDT, and ML-IKH (scalar form) models.

ML IKH MDT ML-IKH

Number of parameters 9 8 13 12

Preyield response Rigid solid Linear elastic solid Linear elastic solid Linear viscoelastic solid

Response in fully unstructured state Newtonian fluid Maxwell fluid Newtonian fluid Newtonian fluid

Kinematic hardening None Modified Armstrong-Frederick None Armstrong-Frederick

Prediction of delayed yielding No No No No

Predictions in step-rate tests: (1) Instantaneous stress jump Yes No Yes Yes

(2) Fast elastic relaxation with an initial extremum No Yes No Yes

(3) Stretched-exponential thixotropic relaxation Yes No No Yes

Summary of the IKH model

c ¼ ce þ cp; r ¼ Gce; _A ¼ _cp � ðqjAjÞmsignðAÞj _cpj; _k ¼ k1ð1� kÞ � k3kj _cpj
_cp ¼ maxf0; signðjr� khAjÞðjr� khAj � kkyÞ=lpg
Model parameters : G; q;m; k1; k3; kh; ky; lp

Summary of the MDT model

c ¼ ce þ cp; _ce ¼ _cp � ðcej _cpjÞ=cmax; cmax ¼ minðcCO=k
m; 1Þ; cCO ¼ ry0=G0

_Gf ¼ �kGðGf � kG0Þ; _k ¼ kBrown½�kjt̂r1 _cpja þ ð1� kÞð1þ jt̂r2 _cpjdÞ�;
r ¼ Gfce þ ðkKSTj _cpjn2 þ K1j_cpjn1 Þsignð _cpÞ
Model parameters : m;G0; ry0; kG; kBrown; t̂ r1; t̂ r2; a; d; n1; n2;KST;K1

TABLE II. The special values of model parameters for which the ML-IKH model reduces to closely related models. Dash: not applicable; blank: no

constraint.

Model parameters h kh ky k1;k2; and k3
a b� 1 gm

Oldroyd-B model ¼ 0 ¼ 0 ¼ 0 —

Saramito’s model [51] ¼ 0 ¼ 0 —

Upper-Convected Maxwell model ¼ 0 ¼ 0 ¼ 0 — ¼ 0

ML model in [33] ¼ 0 ¼ 0

IKH modelb ¼ 0 ¼ 0

Monolambda ideal thixotropic models ¼ 0 ¼ 0 ¼ 0 ¼ 0

Bingham model ¼ 0 ¼ 0 ¼ 0 —

Newtonian fluid ¼ 0 ¼ 0 ¼ 0 ¼ 0 —

Implication of zero values No elasticity No back stress No yield stress No thixotropic model component Single k

aIn addition, k is set to be unity.
bWith additional requirements: k2 ¼ 0, a ¼ 1, n ¼ 1, / ¼ j_cpj, replacing kgthi with gthi, and using a different evolution equation for A or A (see detailed com-

parison in Sec. VI B).
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A. (Since our model accounts for multiple types of structures

through the multiple ki values, it might make sense to

include multiple A values, one corresponding to each type

of structure, and possibly each having a different value of

q. However, for simplicity, we forego this refinement

here.) Shear-induced anisotropic microstructures of thixo-

tropic fluids have been experimentally observed in

Laponite suspensions [65], fumed silica suspensions [66],

waxy crude oils [15], etc. A review is given by Vermant

and Solomon [2].

The internal structures withstand a certain amount of elas-

tic deformation before breaking, and the relaxation of this

elastic deformation results in the viscoelastic response of

thixotropic materials. ce can be interpreted as the characteris-

tic elastic strain of internal structures. One 3D generalization

of ce is the tensor strain ðBe � dÞ where Be is the elastic

Finger tensor, defined as Be ¼ Fe � FT
e . Here, Fe is the elastic

component of the deformation gradient (F) according to the

Kroner Decomposition [67], F ¼ Fe � Fp, where Fp is the

plastic deformation gradient. A detailed discussion about this

decomposition is provided in the Appendix.

IV. MODEL PARAMETERIZATION

The parameterization of the proposed model requires the

following experimental data: The steady state flow curve, a

flow reversal test with small shear rate, and several step-

shear-rate tests with relatively small initial shear rates. For

example, in this study, we use the experimental data in Fig. 3

and the flow reversal test with c_0 ¼ 0:01 s�1 in Fig. 6(a) to

parameterize the model.

As discussed before, the model predicts a viscosity of gm

in the fully unstructured state and a yield stress of (kh/qþ ky)

in the totally structured state. Therefore, gm can be directly

estimated from the high-shear-rate limit of the steady state

flow curve and (kh/qþ ky) from the zero-shear-rate limit.

In a flow reversal test where the shearing direction instan-

taneously changes while the shear rate remains the same, the

model predicts a two-step relaxation of shear stress. This

two-step relaxation is caused by the evolution of ce, the visco-

elastic relaxation, and that of A, the kinematic hardening

relaxation. In the case where the shear rate is small and vis-

cous stress is insignificant, the amount of stress that under-

goes the kinematic hardening relaxation, as predicted by this

model, equals to kh/q, which can be estimated experimentally.

Next, the value of q, governing the plastic strain at which A
reaches steady state in a flow reversal test, can be also deter-

mined in the same flow reversal test through best fit.

The remaining parameters are divided into two groups—

one governing the steady state response, including a, n,

k1=k3, k2=k3 and gthi; the other one governing the transient

response, including k3, b, and G. Parameters in the first

group are first determined from the best fit of the steady state

flow curve and those in the second group from the best fit of

several step-shear-rate tests [in this study, we use three step

tests from 0.1 s–1, as shown in Fig. 3(b)]. Iteration may be

needed to adjust the boundaries of the parameters in the first

group, particularly k1=k3, k2=k3; and gthi. Alternatively, the

power-law exponent n in the shear-induced structure break-

up term can be determined from the fast response in shear

startup tests at large shear rates or stresses. In such tests, the

viscous stress dominates and the model predicts an apparent

viscosity of ðkgthi þ gmÞ. Therefore, the transients of k can

be estimated from the measured viscosity. In the very short

period after the stepwise change of shear rate or stress, if

n ¼ 1, the model predicts a linear relationship between lnk
and time; while if n 6¼ 1, a linear relationship is predicted

between k1�n and time. The value of n may be different for

the SC and RC forms. More details about the estimation of n
are given in our previous work [33].

The fCig and fDig values as well as N, the number of

substructure parameters, are determined from the value of b.

As shown in Eq. (21), they are calculated to best approxi-

mate the stretched exponential using a limited number of

mono-exponentials. More details including a MATLAB

FIG. 3. Experimental data (symbols, adopted from [33]) used to estimate

model parameters (except for kh and q in the proposed model and the IKH-V

model) and model fits (lines, using parameter values in Table IV): (a) Steady

state flow curve, including data measured on a stress-controlled rheometer,

AR-G2, and a strain-controlled rheometer, ARES; (b) Step-shear-rate tests

from a shear rate of 0.1 s-1 to different final shear rates.
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subroutine to perform this calculation are provided in the

supplementary material [39].

V. MODEL EVALUATION

In this section, we test the proposed model, in both SC

and RC forms, against experimental results with shear histo-

ries including steady state, step shear rate, step stress, inter-

mittent step shear rate, flow reversal, and LAOS. We also

investigate the predictions of the ML, IKH, and MDT mod-

els for comparison. There are other models in the literature

that fall into the category of TEVP models. One important

example is the “unified-approach” (UA) model of de Souza

Mendes and Thompson [43]. It has been shown that the UA

model qualitatively captures the TEVP rheology of the

fumed silica suspension but lacks quantitative agreement

[24]. For brevity, we do not include it in this work.

We discuss the critical model components and corre-

sponding improvements in predicting each type of tests. The

LAOS data are adopted from the work of Armstrong et al.
[24] and the others from our previous work [33]. All rheolog-

ical tests use cone and plate geometries. Both data sets are

for fumed silica suspensions (a hydrophobic fumed silica,

Aerosil
VR

R972, is dispersed in a blend of paraffin oil and

low-molecular-weight polymer). The two fumed silica sus-

pensions were synthesized according to the same formula

reported in [23] except that they contain different polymer

ingredients. For more details about the sample preparation

and experimental protocols, we refer the readers to [24,33].

Note that in this section the original IKH model (summa-

rized in Table III) is modified by replacing the constant plas-

tic viscosity, lp, with kgthi þ gm. This modification is

necessary because the original IKH model predicts that

thixotropic response vanishes when the viscous stress domi-

nates, which does not agree with the rheology of the fumed

silica suspension [24,33,37,40] (e.g., the original IKH model

would predict a nearly constant viscosity of lp in the tests of

Fig. 4, contradicting the experimental results). This modifi-

cation introduces one additional parameter. In the following

discussion, we refer to this slightly modified model as IKH-

V model. The predictions of the original IKH model are pro-

vided in the supplementary material [39].

A. Steady state flow curve

Figure 3(a) shows the steady state flow curve of the fumed

silica suspension reported in [33] and the fitting results of the

ML-IKH model in both SC and RC forms, the IKH-V, MDT,

and ML (in its SC form) models. The steady state flow curve

can be fitted accurately by all models.

Table IV lists the parameter values that generate the

model calculations. The MDT model is parameterized from

the best fit of the experimental data in Fig. 3. Besides these

data, the parameterization of the IKH-V and ML-IKH mod-

els also requires the experimental results of the flow reversal

test with a shear rate of 0.01 s–1 in Fig. 6. More details about

the parameterization of the MDT and IKH models are pro-

vided in the supplementary material [39].

B. Step tests

Step tests refer to the experiments where the shear rate or

stress undergoes a stepwise change after a period of steady

shear. The transient response in step tests results mainly

from thixotropy and viscoelasticity.

Figure 3(b) shows the experimental results and model fits in

three step-shear-rate tests from 0.1 s–1 to different final shear

rates. The stress exhibits a fast elastic relaxation with an initial

maximum followed by a gradual thixotropic relaxation. The

thixotropic response follows a stretched-exponential relaxa-

tion. The ML(SC) and ML-IKH models successfully capture

this behavior through the ML approach. The IKH-V model

and MDT model, however, always show a single exponential

thixotropic relaxation, which results in the sharper transition of

stress transients than the experimental results. The IKH-V and

ML-IKH models fit the initial increase and maximum of stress

while the ML(SC) and MDT models do not. The SC form of

the ML-IKH model yields slightly better fitting results than

does the RC form.

FIG. 4. Model predictions of (a) a step-shear-rate test (from 3 to 9 s-1) and

(b) two step-stress tests (from 3, 9 Pa to 7 Pa). Experimental data are adopted

from [33]. These are independent results that have not been used to parame-

terize the models. The rapid change at early times (time< 0.1 s) in (b) are

caused by the inertial response of the rheometer, which is explicitly included

in the calculated response as explained in [33].
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In step tests with relatively large initial shear rates or

stress, the fast elastic response is insignificant, and the test

material behaves like an ideal thixotropic fluid. While the

stress in step-shear-rate tests shows an instantaneous jump,

the measured viscosity changes continuously. In this region

of ideal thixotropy, the thixotropic-only ML model and the

ML-IKH model have a similar level of agreement with

experimental results, as shown in Fig. 4. (The SC and RC

forms of the ML-IKH model have very similar predictions,

as shown in Fig. 11. For brevity, in Fig. 4, we show the pre-

dictions of only the SC form.)

Figure 4(a) shows the model predictions in a step-shear-

rate test from 3 to 9 s–1. Compared with their results in Fig.

3(b), the IKH-V model and MDT model show better predic-

tions in this test. The MDT model agrees with experimental

results well although it still shows a monoexponential stress

relaxation. The IKH-V model can only qualitatively capture

the thixotropic response. The ML and ML-IKH models

slightly overpredict the stress, but it agrees with the experi-

mental results better than do the other two models, due to the

stretched-exponential relaxation in it.

The results of two step-stress tests (from 3 and 9 Pa to

7 Pa) are given in Fig. 4(b). Instrument inertia causes the

steep response for times less than 0.1 s, and is accounted for

theoretically as described in our previous work [33]. Both

the IKH-V and MDT models show significant deviations

from the experimental data while the ML and ML-IKH mod-

els give more accurate predictions.

Next, we examine the models in more step tests with dif-

ferent test conditions, and present these results in Appendix

A, Fig. 11. This figure, along with Figs. 3(b) and 4 show that

the ML-IKH model can quantitatively predict a wide range

of step tests while the MDT model and IKH-V model fail to

predict as accurately over this range. In the ideal thixotropy

region, multiple thixotropic structure parameters (corre-

sponding model parameter: b) and their nonlinear kinetic

equations (a, n) are two key factors needed to predict accu-

rately these step tests. For step tests with small initial shear

rates, viscoelasticity (G) is important in capturing the fast

elastic response. The AF equation (kh, q, m) does not contrib-

ute to the transient response because the shearing direction

remains constant.

C. Intermittent step tests

Intermittent step tests have the flow histories of two con-

secutive step tests where the duration of the first one is var-

ied. Figure 5(a) shows the shear rate histories of a group of

intermittent step tests. Corresponding experimental data and

model predictions are shown in Figs. 5(b)–5(f). The stress

transients for time >0 are sensitive to the value of Dt up to

about 10 min. The stress evolves monotonically when Dt is

small or large while for some intermediate values of Dt, non-

monotonic thixotropic evolution (stress transients for time

>0.1 s) occurs—stress first decreases, then builds up, and

eventually reaches steady state.

Such nonmonotonic thixotropic relaxations should be dis-

tinguished from the elastic response, which has a much

shorter time scale (<0.1 s). The ML Approach successfully

captures this behavior. The rate of change of each ki is pro-

portional to the prefactor Di. In the test of Fig. 5(a), initially

all ki have the same steady state values at 100 s–1. After the

shear rate steps down to 0.5 s–1, the {ki} build up at different

rates. For intermediate Dt values, the ki values with large Di

build up enough that they then decrease as the shear rate

steps to 5 s–1. The ki with small Di, however, have not rebuilt

much and so continue to increase after the stepwise change

of shear rate. Consequently, in the period of t> 0, the stress

first decreases and then increases.

The IKH-V and MDT models incorporate a single structure

parameter for thixotropic evolution and therefore show poor

agreement with experimental results, as shown in Figs. 5(b)

and 5(c). Figure 5(d) shows that the ML-IKH model captures

both the nonmonotonic thixotropic evolution and the depen-

dence of the stress transients on Dt. (For brevity, we show only

the predictions of SC form. The RC form has similar level of

agreement). In Fig. 5(e), we show the predictions of the ML-

IKH model with the same parameters values except that b is

set to unity, so that N¼Di¼Ci¼ 1, and the ML-IKH model

reduces to a single-lambda model. Its predictions in this limit,

like those of the IKH-V and MDT models, show a monotonic

thixotropic relaxation when the shear rate is constant. And the

overall predictions are worse than those in Fig. 5(c). Note that

the initial elastic response is only slightly influenced by the

value of b. The elastic response might also lead to nonmono-

tonic stress transients but the elastic response has a much

TABLE IV. Parameter values of the ML-IKH, ML(SC), IKH-V, and MDT models for the prediction of the experimental data in [33]. Those parameters values

are used in Figs. 3–6.

Parameters SC form RC form ML(SC) IKH-V model MDT model

ky 0:434 Pa 0:458 Pa 0.68 Pa 0:51 Pa ry0 ¼ 0:8Pa, K1 ¼ 0:41Pa � s, n1 ¼ 1, G0 ¼ 100 Pa, m ¼ 0:52,

n2 ¼ 1, KST ¼ 1:76 Pa s, a ¼ 0:7, d ¼ 0:3, kBrown ¼ 8:7� 10�2 s�1,

t̂r1 ¼ 3:42 s, t̂ r1 ¼ 0:18 s, kG ¼ 8:2� 10�2 s�1
kh 0:195 Pa 0:205 Pa 0 0:22 Pa

q 1 1 0 1

G 60 Pa 70 Pa þ1 100 Pa

gthi 2:325 Pa � s 1:840 Pa � s. 1.74 Pa � s 1:29 Pa � s
gm 0:430 Pa � s 0:425 Pa � s 0.45 Pa � s 0:56 Pa � s
b 0.65 0.65 0.65

a 2.537 1.758 1.9

n 2 3 2

k1 0:042Pa�as�1 0:105 sa�1 0.043 Pa�as�1 6:5� 10�2

k2 3� 10�4 Pa�0:5s�1 3� 10�4 s�0:5 0.0104 Pa�0:5s�1 7:4� 10�2 s�1

k3 6� 10�3 s�1 1:6� 10�2 s�1 0.01 s�1 m ¼ 1
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smaller time scale than the thixotropic relaxation. Figure 5(f)

shows the predictions of the thixotropic-only ML model. The

ML and ML-IKH models have a similar level of agreement

with experimental results, which indicates that the ML

approach is the dominating model component in predicting the

test of Fig. 5(a). For shear histories that involve further smaller

shear rates than 0.5 s–1 (see Fig. S5 for an example), the differ-

ences between ML and ML-IKH model predictions increase.

The latter gives better predictions because viscoelastic evolu-

tion is significant when low shear rates are involved and the

ML model lacks the component accounting for viscoelasticity.

In summary, the ML Approach (corresponding model

parameter, b), and the viscoelastic model component (G) if

low shear rates are involved, are critical to qualitatively pre-

dict intermittent step tests. The ML approach successfully

predicts the nonmonotonic thixotropic evolution. The effects

of nonlinear thixotropic evolution equation (a, n) cannot be

clearly seen here. The AF equation (kh, q, m) does not con-

tribute to the transient response because the shearing direc-

tion remains the same.

D. Flow reversal tests

In a flow reversal test, after an attainment of a steady state

under shearing, an instantaneous reversal of the shear

direction is imposed, with the magnitude of the shear rate

held fixed.

For a Newtonian fluid in a flow reversal test, the sign of

the shear stress instantaneously changes while its magnitude

remains constant. A Maxwell fluid, on the other hand, pre-

dicts that the stress after the reversal continuously evolves to

its opposite value following an exponential function with a

constant characteristic time. For some colloidal suspensions

that form anisotropic structures under shear, the stress fol-

lowing flow reversal exhibits a gradual relaxation that scales

with strain [68,69]. TEVP fluids, e.g., the thixotropic fumed

silica suspension in this study, however, show different rheo-

logical behaviors, as shown in Fig. 6.

In Fig. 6, we compare the experimental results with model

fits (for _c0 ¼ 0:01 s�1) or independent predictions (for all

_c0 > 0:01 s�1) in several flow reversal tests, each identified

by a specific color of symbols and lines. Figure 6(a) shows

experimental data plotted as reduced stress versus strain in

flow reversal tests with shear rates ranging from 0.01 to

10 s–1. The data were collected using the strain-controlled

ARES rheometer. The test fluid and procedures of rheologi-

cal treatment are as previously reported [33]. Similar results

have been reported in [70]. In flow reversal tests with shear

rates of 0.1 s–1 or lower, the reduced stress can be scaled

FIG. 5. Experimental results (symbols) and model predictions [lines in (b)–(f)] of a group of intermittent step tests: (a) Shear rate histories. The sample is pre-

sheared at 100 s-1. The shear rate then steps down to 0.5 s-1 and is held constant for Dt. At t¼ 0, shear rate steps up to 5 s�1 until the stress reaches steady state.

The legend is for the experimental data in (b)–(f), which also show the predictions of, respectively, the IKH-V, MDT, ML-IKH (SC, b ¼ 0:65), ML-IKH (SC,

b ¼ 1), and ML (SC, b ¼ 0:65) models. r(t) denotes shear stress and r1 denotes the steady-state value. The subplots in (b)–(f) show r(t)/r1 vs time in the

test with Dt¼ 20 s. Experimental data are adopted from [33]. The dotted oval encloses the region of nonmonotonic thixotropic relaxation.
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with the strain to yield a master curve. The stress transients

follow a two-step relaxation that takes approximately three

strain units to reach the plateau at steady state. As the shear

rate increases above 0.1 s–1, the initial steep response is no

longer detectable and the reduced stress transients deviate

from the master curve.

Figure 6(b) shows the model fits and predictions corre-

sponding to the experimental results of Fig. 6(a). The flow

reversal test with _c0 ¼ 0:01 s�1 is used to fix the values of

kh, q, and m. The optimal values of q and m are both unity in

the IKH-V and ML-IKH models. (The RC and SC forms

give similar predictions. For brevity, we show only the pre-

dictions of the SC form.) The two models yield similar

results in all the flow reversal tests of Fig. 6(a), both predict-

ing the two-step relaxation in good agreement with experi-

mental data. In Fig. 6(b), for clarity, we show only two

typical predictions of the IKH-V model.

Since the absolute value of the shear rate remains constant

in a flow reversal test, the predicted thixotropic effect is

insignificant. The transient response results mainly from the

viscoelastic relaxation and the plastic evolution (for exam-

ple, kinematic hardening effects). In the IKH-V and ML-

IKH models, the evolution of ce, the viscoelastic relaxation,

captures the initial steep response; and the transients in A,

which describe the kinematic hardening effects, allow both

models to predict well the subsequent gradual stress response

that scales with strain. The two models predict the rise of the

initial plateau as shear rate increases. But they overpredict

the initial plateau and underpredict the amount of strain it

takes for the stress to reach steady state. The discrepancies

are significant for large shear rates, possibly because the vis-

cosity is also anisotropic and evolves in reversing flows with

a smaller time (or strain) scale than that of the back-stress

evolution. The MDT model captures only the elastic effects

and therefore has poor predictions in flow reversal tests. The

ML model lacks components of both viscoelasticity and

kinematic hardening. It, therefore, predicts no transient

response in flow reversal tests.

E. LAOS

In this section, we test the ML, ML-IKH, IKH-V, and

MDT models in LAOS tests where both the shearing direc-

tion and shear rate are periodically changing. The strain his-

tory of a LAOS test is a sinusoidal wave with a frequency of

x and amplitude of c0.

cðtÞ ¼ c0 sin ðxtÞ: (39)

The experimental data are originally reported in [24]. The

test fluid is a fumed silica suspension and the rheological

tests were performed on the ARES-G2 rheometer. To

parameterize the ML, ML-IKH, and IKH-V models, we

used the following experimental data from [24]: The steady

state flow curve, the step-shear-rate tests from 5 and 0.1 s–1,

and the flow reversal test from �1 s�1. The predictions of

the MDT model are calculated using the original parameter

values given in [24]. Table V lists all parameter values. For

this set of experimental data, the RC forms of the ML and

ML-IKH models have better agreement with experimental

data than the SC forms. For brevity, in Figs. 7 and 8, we

show predictions of only the RC forms of the ML and ML-

IKH models.

The test fluid shows complex rheological behaviors in

LAOS tests due to the coexistence of thixotropic, viscoelas-

tic, and plastic response. Their prominence vary depending

on the values of x and c0. Figure 7 shows the results of a

LAOS test with x ¼ 0:1 rad=s and c0 ¼ 10. This test has a

Deborah number of De ¼ gthix=G � 3� 10�3, at which the

elastic effects are insignificant. We chose this test condition

FIG. 6. (a) Experimental results (b) model fits (0.01 s�1) and predictions

other shear rates of flow reversal tests with shear rates indicated in the leg-

end. The subplot in (a) shows the shear rate histories. r(t) and r1 denote,

respectively, the shear stress and steady-state value of stress. The strain is

defined as c ¼ _c0t. The vertical line indicates the position where c¼ 3. The

low-shear-rate tests reach steady state at c � 3. The predictions in (b) are

only shown over the range of strain for which experimental data are avail-

able. kh, q, and m (in the IKH-V model) are estimated in the test with
_c0 ¼ 0:01 s�1. The IKH-V and ML-IKH (in SC form) models give similar

predictions in all tests (for simplicity, only two typical predictions of the

IKH-V model are shown here). The ML model (in SC form) predicts no

transient response in all tests.
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for detailed discussion because it is suitable to examine the

model components accounting for thixotropy and kinematic

hardening. We compare the models in more test conditions

in Fig. 8.

Figures 7(a) and 7(b) plot, respectively, the elastic (reduced

stress vs strain) and viscous (reduced stress vs shear rate) pro-

jection of the Lissajous–Bowditch curve. Experimental data

and model predictions are both normalized into the range

�1�1 to better show the level of qualitative agreement. The

quantitative discrepancies are shown in Fig. 8. Four points in

the strain histories are marked out for the following discussion.

Because De is small, the transient response results mainly

from kinematic hardening and thixotropy. Kinematic harden-

ing leads to the stress transients within around three strain

units after the shearing direction changes, as seen in Fig.

7(a). The thixotropic effects can be seen in Fig. 7(b): From

the point a to b, the slope increases as the shear rate

decreases to zero, which indicates a build-up of the viscosity;

and the slope decreases again for the strain histories from the

point b to c, as the shear rate reaches its negative maximum.

A hysteresis loop is formed because the evolution of internal

structures lags behind the change of the shear rate. The ML

and MDT models lack the component of kinematic harden-

ing. They, therefore, yield poor agreement with the experi-

mental data in Fig. 7(b). The original IKH model includes

kinematic hardening but it fails to quantitatively capture the

thixotropic response due to the assumption of a constant

TABLE V. Parameters of the ML-IKH, ML, IKH-V, and MDT models for

the prediction of the LAOS results in [24]. Those parameters values are used

in Figs. 7 and 8.

Parameters

ML-IKH

(RC form)

ML

(RC form) IKH-V MDT

ky 7:66 Pa 10.96 Pa ky ¼ 7:88 Pa

kh ¼ 3:36

q ¼ 1

m ¼ 1

G ¼ 700 Pa

gthi ¼ 16:32 Pa � s
gm ¼ 1:32 Pa � s

k1 ¼ 1:18

k2 ¼ 0:36 s�1

ry0 ¼ 11 Pa

K1 ¼ 1:17 Pa � s
n1 ¼ 1

G0 ¼ 450 Pa

m ¼ �1:5
n2 ¼ 0:81

KST ¼ 11:21 Pa � s
a ¼ 1:53

d ¼ 0:63

kBrown ¼ 0:28 s�1

t̂ r1 ¼ 0:77 s

t̂ r1 ¼ 2:0 s

kG ¼ 0:09 s�1

Values are adopted

from [24].

kh 3:30 Pa 0

q 1 0

G 700 Pa þ1
gthi 20:0 Pa � s 16.4 Pa � s
gm 1:22 Pa � s 1.33 Pa � s
b 0. 5 0.5

a 1.29 1.45

n 1 1

k1 0:496 sa�1 0.24 sa�1

k2 0:178 s�0:5 0.2 s�0:5

k3 0:2 s�1 0.1 s�1

FIG. 7. The elastic (a) and viscous (b) projections of the Lissajous–Bowditch curve for x ¼ 0:1 rad=s and c0 ¼ 10. The subplot in (a) shows the strain histories

with four points marked out. Experimental data and model predictions are both linearly rescaled from �1 to 1. The experimental data (black lines) are adopted

from [24]. Panel (i) of (b) shows the complete experimental data. Panels (ii)–(iv) show only half of the symmetric LAOS results for clarity. (c) and (d) The

response of A, predicted by the ML-IKH model, plotted against strain and shear rate, respectively. (e) and (f) the response of k, predicted the ML-IKH model,

plotted against strain and shear rate, respectively.
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plastic viscosity. In comparison, the IKH-V and ML-IKH

models capture both kinematic hardening (through the

evolution of A) and thixotropy (through the response of k)

and therefore give better predictions than the other three

models.

The model predictions of the LAOS tests1 for additional

test conditions are presented in Fig. 8. The IKH-V and ML-

IKH models have very similar predictions in the LAOS tests

although they show distinct results in step tests. MDT, IKH-

V, and ML-IKH models all have accurate predictions when

xc0 is large (in the ideal thixotropy region) but fail to predict

experimental results, even qualitatively, when c0 ¼ 0:1. The

models fail because they oversimplify the complex visco-

elastic response. The test fluid shows complex nonlinear vis-

coelastic response with multiple time scales while the

models assume linear viscoelasticity with a single viscoelas-

tic relaxation time. As c0 increases, the model predictions

improve. In the tests for c0 ¼ 1 and 10, the kinematic hard-

ening effect is significant. The IKH-V and ML-IKH models

capture this response and show better agreement with experi-

mental results than the MDT model does.

F. Summary

Table VI assesses the predictive ability of the MDT, ML,

IKH-V, and ML-IKH models for transient shear rheology of

thixotropic fluids. The ML-IKH model has four key aspects

that result in the quantitative predictions of the complex

TEVP rheology. They are (1) a spectrum of thixotropic struc-

ture parameters (corresponding model parameter: b), (2) non-

linear kinetic equations for thixotropic evolution (a, n), (3)

the Armstrong-Frederick kinematic hardening rule (kh, q, m),

and (4) the inclusion of viscoelasticity (G). Feature 1 gener-

ates stretched-exponential thixotropic evolution in step tests

[Figs. 3(b), 4, and 11] and is critical in capturing the nonmo-

notonic stress transients in intermittent step tests (Fig. 5).

Feature 2 enables the model to quantitatively predict step

tests with various test conditions (Fig. 11). Feature 3 is criti-

cal in predicting the transient response induced by the change

of shearing direction (Figs. 6–8). Feature 4 is important in

capturing the fast transient response resulting from viscoelas-

ticity [Figs. 3(b), 6, and 8]. In applications where only some

of the features are of interest or importance, the model can be

conveniently simplified by setting corresponding model

parameters to specific values, as summarized in Table II.

FIG. 8. Pipkin diagram: (a) Elastic projection in which reduced stress is plotted against strain; (b) viscous projection, in which reduced stress is plotted against

strain rate. Experimental data (black lines) are adopted from [24]. Model predictions are calculated using the parameter values in Table IV. Model predictions

and experimental data are normalized by the maximum of the latter. This figure shows the quantitative and qualitative discrepancies between the model predic-

tions and experimental results. The dashed boxes contain the results presented in Figs. 7(a) and 7(b).

1The ML model works well only when xc0 is large (�100 s�1 in this study)

so that the viscoelastic and plastic response are insignificant. For brevity,

we do not include the ML model in Fig. 8. Its predictions are provided in

Fig. S6.
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VI. PREDICTIONS OF THE TENSORIAL MODEL

A. Comparison with the scalar model

Here, we demonstrate that the proposed tensorial model

can reproduce the quantitative predictions of the scalar

model. According to Eq. (31), the viscoelastic relaxation

time is kgthi=G. In simple shear flows, an effective

Weissenberg number (Wieff) can be defined as

Wieff ¼
kgthi _c

G
: (40)

For infinitesimal Wieff, Dp � D, and the flow parameter, /,

and consequently k, are equal to those in the scalar model.

Our model allows Wieff to remain small even for large shear

rates because as shear rate increases, k decreases. With some

parameter values, e.g., n¼ 1 and a> 1.5 in the RC form,

Wieff approaches zero for infinitely large _c.

With the same parameter values and finite Wieff, the shear

stress and back strain predicted by the tensorial model are

not identical to those of the scalar model. Consider the case

where h¼ 0, for which Eqs. (31) and (32) reduce to

max 0;
�r � kry0

�r

	 

seff ¼ 2kgthiD (41)

A
r
¼ D� qdpA: (42)

In simple shear flows, the components of seff and A are

seff ¼
0 �r 0

�r 0 0

0 0 0

2
64

3
75; A ¼

A11 A12 0

A12 0 0

0 0 0

2
64

3
75: (43)

�r is related to _c through

�r ¼ signð _cÞkry0 þ kgthi _c: (44)

Therefore,

s12 ¼ jback;12 þ signð _cÞkry0 þ kgthi _c þ gm _c (45)

where jback;12 ¼ khA12ð1þ 2A11Þ. The evolution of A11 and

A12 follows as:

_A11 ¼ 2 _cA12 � q
_c
2










A11

_A12 ¼
_c
2
� q

_c
2










A12:

8>>><
>>>:

(46)

In comparison, for the scalar model, _A ¼ _c � q _cA and

r ¼ khAþ signð _cÞkry0 þ kgthi _c þ gm _c: (47)

With different values of kh and q, the tensorial evolution

equation for A can reproduce the predictions of its scalar

equivalent. To show this, Fig. 9 plots the predictions of the

tensorial and scalar models in shear-start-up tests, with

model parameters for both taken from Table IV for the SC

form, except that for the tensorial model we take kh¼ 0.3 Pa

and q¼ 3. The kh and q are determined so that jback;12 and

khA have close results in flow histories with small Wi.
Figure 9 shows that as the shear rate increases, jback;12

deviates from khA and exhibits a maximum that increases

with increasing shear rate. This discrepancy occurs because

as shear rate and therefore Wieff increase, Eq. (43) is no

longer valid and the first term in Eq. (31) is significant.

Nevertheless, the stress difference resulting from this differ-

ence between jback;12 and khA remains insignificant relative

to the viscous stress (for example, in test iv, the difference

between jback;12 and khA is less than 0.3 Pa while the total

shear stress is about 50 Pa). Consequently, the tensorial and

scalar models give very similar predictions of shear stress

and k, as shown in Figs. 9(a) and 9(b). The tensorial model,

therefore, can reproduce the scalar model’s quantitative pre-

dictions in the test results shown in Figs. 3–8.

B. Comparison with the tensorial IKH model

Here, we briefly compare our tensorial ML-IKH model

with the tensorial IKH model, given in the supporting infor-

mation of [15]. The tensorial IKH model is a 3D generaliza-

tion of its scalar form based on the multiplicative

decomposition of the deformation gradient tensor. It involves

stress and strain measures defined in a “reference configu-

ration” and an “intermediate configuration.” Such formula-

tion belongs to the Lagrangian form and is more suitable for

predicting the solid mechanics of TEVP materials. The ten-

sorial ML-IKH model is based on the additive decomposi-

tion of the rate of deformation tensor. It does not depend on

TABLE VI. Evaluation of the MDT, ML, IKH-V, and ML-IKH models in predicting the simple shear rheology of a model thixotropic fluid. E: excellent; G:

good; M: moderate; P: poor.

MDT ML IKH-V ML-IKH Remarks

Number of parameters 13 9 9 12 The original IKH model is modified by adding one model parameter,

as explained in the beginning of Sec. V.

Steady state flow curve E E E E

Step tests with small shear rate or stress M M M G MDT fails to predict the initial elastic response.

Step tests with large shear rate or stress M G M G IKH-V and MDT fail to predict the stretched-exponential thixotropic relaxation.

Intermittent step tests P M P G IKH-V and MDT give poor predictions for intermediate Dt

Flow reversal tests P P G G The IKH-V and ML-IKH models show good predictions for small shear rates.

LAOS tests (large xc0) M M G G The IKH-V and ML-IKH models have very similar predictions.

LAOS tests (small xc0) P P P P For the same xc0 value, model predictions improve as c0 increases.

336 WEI, SOLOMON, AND LARSON

 19 April 2024 16:11:35



a reference configuration. The Cauchy stress tensor, its rate

of change, the rate of deformation tensor, and the kinematic

hardening variable can be written in a simple functional

form as discussed in Sec. III B. This formulation belongs to

the Eulerian form and is more suitable for most fluid flow

simulations of TEVP fluids. The tensorial IKH model is in

principle applicable for finite and large elastic deformations

while the tensorial ML-IKH model assumes infinitesimal

elastic deformation. This assumption is valid for weakly

aggregated suspensions and it greatly simplifies the constitu-

tive equations. With this assumption, the tensorial IKH

model can also be written in Eulerian form. But it still has a

drawback in that it predicts an unphysical oscillatory shear

stress in simple shear flows for certain values of model

parameters and shear rates. The oscillation results from its

kinematic hardening rule, adopted from the theoretical work

of Henann and Anand [52]. This disadvantage is however

absent in the ML-IKH model.

For simplicity, consider the limit of zero yield stress and

small elastic deformation. The tensorial IKH model in this

limit can be written in a simple Eulerian form, as

TABLE VII. Comparison of our model with the tensorial IKH model in the

limit of no yield stress (ky ¼ 0) and small elastic deformation.

Additional

limits ML-IKH IKH model

None s ¼ ss þ 2gmD

kh s
r

sþseff ¼ 2kgthiD

seff ¼ s� jback ¼ 2gthiDp

jback ¼ khðAþ 2A2Þ
A
o

¼ A � Dp þ Dp � A
þDp � qdpA

h s
o

þseff ¼ 2gD

seff ¼ s� sback ¼ 2gDp

sback ¼ khA ¼ khln ~A

A~
o

¼ ~A � Dp þ Dp � ~A

�qdp
~A � lnð~AÞ

Rigid

plasticity

ðh ¼ 0Þ

s ¼ 2ðkgthi þ gmÞDþ jback

A
r
¼ D� qdA

s ¼ 2gDþ sback

A~
r

¼ �qd ~A � lnð~AÞ

Remarks: A is symmetric. A¼ 0

in the un-deformed

reference configuration

~A is symmetric and unimodular.

A ¼ ln ~A is symmetric

and deviatoric.
~A ¼ 1 and A ¼ 0 in the

undeformed

reference configuration.

FIG. 9. Comparison of the 1-2 component of the tensorial form (dashed black

lines) and the scalar model (solid red lines) in four shear-start-up tests: the evo-

lution of (a) shear stress, (b) k, (c) back stress, taken as jback;12 in the tensorial

model and khA in the scalar model. The shear rates in (i)–(iv) are, respectively,

0.1, 1, 10, 100 s�1. Model calculation is generated using the parameter values

for the SC form in Table III except that kh and q take different values, respec-

tively, 0.3 Pa and 3, in the tensorial model, while for the scalar model, these

values, taken from Table IV, are 0.195 Pa and 1, respectively.

FIG. 10. Predictions of the back strain in shear-start-up tests. Solid lines are

2A12 in the ML-IKH model and dashed lines are A12 in the IKH model, in

both cases in the limit of no yield stress and rigid plasticity. q equals 0.01

for lines A and a; 0.1 for B and b; 1 for C and c; and 10 for D and d. The

shear stress predicted by the IKH model is ðg _c þ khA12Þ. The oscillation of

shear stress is significant when q and g _c=kh are small.
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summarized in Table VII. In the limit of h ¼ 0, the two mod-

els further reduce to rigid, i.e., nonelastic, plastic models.

Figure 10 plots the predictions of 2A12 by our model and

its equivalent, A12, by the IKH model in the limit of rigid

plasticity in shear-start-up tests. For small q values, the IKH

model predicts a damped oscillation of A12 and therefore of

the shear stress ðg _c þ khA12Þ. As q increases, this oscillation

vanishes and the two models show the same predictions. The

oscillation of shear stress is significant when both q and

g _c=kh are small. Note that q¼ 1 is used in this study to

model the rheology of the fumed silica suspension, and it is

yet unclear what the range of values that q takes in experi-

mental TEVP systems.

VII. CONCLUSION

The primary goal of this work is to develop a comprehen-

sive constitutive model for the transient rheology of TEVP

fluids. Such TEVP fluids show the following important

rheological features: (1) Viscoelasticity and stretched-

exponential thixotropic relaxation in step rate or step stress

tests, (2) a nonmonotonic thixotropic response in intermittent

flows, (3) kinematic hardening, and (4) linear viscoelasticity

before yielding. We proposed here a phenomenological

model that captures those rheological features by combining

four key components that have not previously been unified

in a single model: (1) Multiple thixotropic structure parame-

ters, (2) nonlinear thixotropic kinetic equations, (3) the

Armstrong-Frederick kinematic hardening rule, and (4) lin-

ear viscoelasticity. The proposed model is a generalization

of our previous ML ideal thixotropic model and merger of

this with the IKH model. This new model has 12 parameters,

four more than the IKH model, where the additional parame-

ters introduce multiple thixotropic structural parameters

which allow the structure to relax in a stretched exponential

form, as well nonlinearities into the evolution of structure,

and leading to more accurate predictions in step rate or step

stress tests. Such a large number of parameters is necessary

to accurately capture the TEVP rheology and is common in

thixotropic models [15,24,26,27,31,58].

For limiting values of model parameters, the ML-IKH

model reduces to several rheological models, such as the

Oldroyd-B model (when thixotropy and plasticity are

absent), the Bingham model (when viscoelasticity, thixot-

ropy, and back stress are absent), Saramito’s elastoviscoplas-

tic model [51] (when thixotropy and back stress are absent),

Moore’s ideal thixotropic model [71] (when viscoelasticity

and back stress are absent), and more examples are summa-

rized in Table II. This flexibility allows the users to conve-

niently simplify it as needed for desired applications.

We comparatively examined this model over a wide range

of test conditions for steady shear, step shear rate, step stress,

intermittent shear, shear reversal, and LAOS experiments. The

experimental data are from a well-studied thixotropic fumed

silica suspension. The results of the comparative testing are

summarized in Table VI. This comparative study demonstrates

the success of the four key model components in capturing

several typical rheological features of TEVP materials.

Multiple thixotropic structure parameters and their nonlinear

kinetic equations are critical for predicting the rheology in step

tests and intermittent shear tests. The Armstrong-Frederick

kinematic hardening rule is important in predicting the flow

reversal tests. The model components for linear viscoelasticity

capture the fast elastic response in step tests.

We also presented a tensorial form of this model based on

the additive decomposition of the rate of deformation tensor.

It is written in the Eulerian form and suitable for the fluid

flow simulation of thixotropic fluids. We demonstrated that

this tensorial model can reproduce the quantitative predic-

tions of the scalar model and does not show unphysical

oscillation of shear stress in simple shearing flows. It is

frame-invariant and satisfies the second law of thermody-

namics (see Appendix B for details).

This model has following limitations. First, the ML

approach accounting for thixotropy assumes a constant stretch-

ing factor (b) while the experiments in [37] have shown that b
varies as test condition changes. Breakdown experiments with

large final shear rates exhibit small b values (e.g., 0.3); con-

versely, build-up tests with small final shear rates give large b
values (e.g., 1.5). This limitation may lead to poor predictions

of the thixotropic evolution when the shear rate is small.

Second, this model fail to predict the delayed yielding behavior

that some TEVP materials exhibit. Third, this model assumes

linear viscoelasticity with a single time scale for viscoelastic

relaxation. The real TEVP fluids, however, often exhibit com-

plex nonlinear viscoelasticity. Fourth, the model assumes that

the yield stress depends on structural anisotropy (through the

Armstrong-Frederick kinematic hardening rule of back stress)

but the viscosity does not, which needs to be further examined.

Furthermore, the tensorial form of this model in principle can

be used in arbitrary 3D flow conditions. But it has hitherto

been tested only in simple shear flows because of the lack of

nonshearing rheological experiments on TEVP materials. We

leave it for further work to overcome these limitations.
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APPENDIX A: MODEL PREDICTIONS IN
ADDITIONAL STEP TESTS

Here, we test the models in step tests over a range of test

conditions. Figures 11(a) and 11(b) plot the model predic-

tions in nine step-shear-rate tests. The RC and SC forms of

the ML-IKH model give similar predictions that are both in

quantitative agreement with the experimental data, as shown

in Fig. 11(a). The MDT model predicts those tests well but

tends to predict narrower stress transients than the experi-

mental results. The IKH model provides only qualitatively

correct predictions.
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Figures 11(c) and 11(d) plot the model predictions of 12

step-stress tests. The ML-IKH model accurately predicts

those step-stress tests while the other two models show only

qualitative agreement with experimental data.

APPENDIX B: FREE ENERGY IMBALANCE

In this section, we demonstrate that the tensorial ML-IKH

model satisfies the free-energy imbalance, i.e., obeys the sec-

ond law of thermodynamics. The total free energy (W) has

the following form:

W ¼ G

2
tr Beð Þ � 3½ � þ 1

2
khA : A (B1)

where the elastic energy is described the incompressible neo-

Hookean model. Here the first and second terms on the right

side are, respectively, the elastic (We) and plastic (Wp) free

energies. Be denotes the elastic finger tensor, defined as

Be ¼ Fe � FT
e , where Fe is the elastic component of the defor-

mation gradient F according to the Kroner decomposition

[67], F ¼ Fe � Fp. Here, F, Fe, and Fp are defined as

F ¼ @x

@X
;

Fij ¼
@xi

@Xj
;

Fp ¼
@x

@�x
;

Fpð Þij ¼
@xi

@�xj
;

Fe ¼
@�x

@X

Feð Þij ¼
@�xi

@Xj

8>>><
>>>:

(B2)

where X, �x, and x are, respectively, position vectors in

the reference, intermediate, and current configurations. The

velocity gradient tensor (L ¼ ð$vÞT) as well as its elastic

and plastic components are, respectively, L ¼ _F � F�1,

Le ¼ _Fe � F�1
e , and Lp ¼ Fe � _Fp� F�1

p � F�1
e .

For incompressible flows, the free-energy imbalance

requires that s : D� _W > 0 is always valid, where s ¼ sm

þss. The rate of change of free energy is _W ¼ _We þ _Wp where
_We ¼ G

2
d : _Be, and _Wp ¼ khA : _A. We expand _Be as follows:

FIG. 11. Model predictions for step tests over wide-ranging test conditions: (a) Step-shear-rate tests and the predictions of the ML-IKH model in RC (dashed

lines) and SC forms (solid lines); (b) the same experimental data as in (a) with predictions of the IKH model (dashed lines) and MDT model (solid lines); (c)

step-stress tests (ro, initial stress; rt, final stress) with the predictions of the ML-IKH model; (d) the same experimental data as in (c) with predictions of the

IKH and MDT models. The initial steep response in the step-stress tests is due to inertial effects, which are incorporated into the model predictions.

Experimental data are adopted from [33].
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_Be ¼ _Fe � FT
e þ Fe � _F

T

e

¼ _Fe � F�1
e � Fe � FT

e þ Fe � FT
e � F�T

e � _F
T

e

¼ Le � Be þ Be � LT
e : (B3)

Therefore,

_We ¼
G

2
d : Le � Be þ Be � LT

e

� �
¼ G

2
Be : Le þ LT

e

� �
¼ GBe : De

¼ ss : De (B4)

which gives

s : D� _W ¼ ss : Dp � _Wp: (B5)

We next derive the expression for jback : Dp, which will
be used in Eq. (B7)

jback : Dp

¼ khðAþ 2A � AÞ : Dp

¼ khA : Dp þ khðA � AÞ : ðWþ DpÞ þ ðWþ DpÞT
h i

¼ sback : Dp þ sback : ðWþ DpÞ � Aþ A � ðWþ DpÞT
h i

¼ sback : Dp þ sback : ð _A � Dp þ qdpAÞ
¼ sback : ð _A þ qdpAÞ (B6)

ss : Dp � _Wp

¼ ss : Dp � sback : _A

¼ ss : Dp � jback : Dp þ jback : Dp � sback : _A

¼ seff : Dp þ jback : Dp � sback : _A

¼ seff : Dp þ qdpsback : A: (B7)

According to Eq. (29), seff : Dp is nonnegative. And
sback : A ¼ khA : A � 0. Therefore, the free energy imbal-
ance is always satisfied.

NOMENCLATURE

a order of flow parameter in break-down term

A kinematic hardening structure parameter

A 3D generalization of A
b order of flow parameter in shear-induced build-up

term

Be elastic Finger tensor

Ci coefficient of ki

D rate of deformation tensor

Di prefactor of ki in its kinetic equation

De, Dp elastic and plastic contribution of D

F deformation gradient

Fe, Fp elastic and plastic components of F

G elastic modulus

k1 kinetic constant of break-down term

k2 kinetic constant of shear-induced build-up term

k3 kinetic constant of Brownian build-up term

kh back stress coefficient

ky yield stress coefficient

K1 k1/k3

K2 k2/k3

_c shear rate

m order of k in break-down term

n order of k in build-up terms

N number of ki

t time

W vorticity tensor

b stretching factor

$v velocity gradient

gm limiting high shear rate viscosity

gthi thixotropic viscosity increment

/ flow parameter

_c shear rate

ki substructure parameter

k structure parameter

w free energy

we, wp elastic and plastic free energies

r stress

r1 equilibrium value of stress

ro initial stress

rt final stress

ry0 apparent yield stress

s extra stress tensor

sm, ss stress contribution from medium and internal

structures

seff effective stress tensor

sback back stress tensor

jback intermediate back stress tensor

Dt duration of the intermediate step
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