Xanthan gum (XG) is a biopolymer extensively utilized as a rheology modifier across several industries, including oil and gas, food, and cosmetics, where enhancements in physicochemical properties are essential. In this context, the addition of nanomaterials such as graphene oxide (GO) can play a key role in the rheological response of XG under different thermophysical conditions. The present work aims to study the effects of the addition of GO nanostructures on the rheology and the microstructure of aqueous suspensions of XG. GO nanosheets were synthesized by the modified Hummers method. The rheological response was obtained through steady-state and oscillatory flow tests to evaluate the effect of GO concentration in a fixed concentration of XG in water under different temperatures and pressures. Samples containing a near saturated concentration of sodium chloride were also analyzed. XG suspensions showed a shear-thinning and viscoelastic response, while the addition of GO leads to a more robust suspension with an increase in shear viscosity and viscoelastic moduli, as well as thermal stability at high temperatures, while at high pressure minimal influence was observed. The addition of sodium chloride displayed an opposite behavior from GO, decreasing its rheological response at low temperatures and having less influence at high temperatures. Flow curves were fitted by a phenomenological model with two power-law regimes. The cryo-micrographs supported the rheological findings and presented a visual depiction of the microstructure of the suspensions. The observed enhancements in viscoelastic properties and thermal stability offer promising paths for the development of advanced functional fluids.

1.
Whitcomb
,
P. J.
, and
C. W.
Macosko
, “
Rheology of xanthan gum
,”
J. Rheol.
22
,
493
505
(
1978
).
2.
Rodd
,
A.
,
D.
Dunstan
, and
D.
Boger
, “
Characterisation of xanthan gum solutions using dynamic light scattering and rheology
,”
Carbohydr. Polym.
42
,
159
174
(
2000
).
3.
Wyatt
,
N. B.
, and
M. W.
Liberatore
, “
Rheology and viscosity scaling of the polyelectrolyte xanthan gum
,”
J. Appl. Polym. Sci.
114
,
4076
4084
(
2009
).
4.
de Moura
,
M. R. V.
, and
R. B. Z. L.
Moreno
, “
Concentration, brine salinity and temperature effects on xanthan gum solutions rheology
,”
Appl. Rheol.
29
,
69
79
(
2019
).
5.
Song
,
K.-W.
,
Y.-S.
Kim
, and
G.-S.
Chang
, “
Rheology of concentrated xanthan gum solutions: Steady shear flow behavior
,”
Fibers Polym.
7
,
129
138
(
2006
).
6.
N’gouamba
,
E.
,
M.
Essadik
,
J.
Goyon
,
T.
Oerther
, and
P.
Coussot
, “
Yielding and rheopexy of aqueous xanthan gum solutions
,”
Rheol. Acta
60
,
653
660
(
2021
).
7.
Jeanes
,
A.
,
J. E.
Pittsley
, and
F. R.
Senti
, “
Polysaccharide B-1459: A new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation
,”
J. Appl. Polym. Sci.
5
,
519
526
(
1961
).
8.
Chaturvedi
,
S.
,
S.
Kulshrestha
,
K.
Bhardwaj
, and
R.
Jangir
, “A review on properties and applications of xanthan gum,” in Microbial Polymers (Springer, Singapore, 2021), pp. 87–107.
9.
Xie
,
W.
, and
J.
Lecourtier
, “
Xanthan behaviour in water-based drilling fluids
,”
Polym. Degrad. Stab.
38
,
155
164
(
1992
).
10.
Bacha
,
H. B.
,
N.
Ullah
,
A.
Hamid
, and
N. A.
Shah
, “
A comprehensive review on nanofluids: Synthesis, cutting-edge applications, and future prospects
,”
Int. J. Thermofluids
22
,
100595
(
2024
).
11.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
12.
Nicodemo
,
L.
,
L.
Nicolais
, and
R.
Landel
, “
Shear rate dependent viscosity of suspensions in Newtonian and non-Newtonian liquids
,”
Chem. Eng. Sci.
29
,
729
735
(
1974
).
13.
Tawalbeh
,
M.
,
I.
Shomope
, and
A.
Al-Othman
, “
Comprehensive review on non-Newtonian nanofluids, preparation, characterization, and applications
,”
Int. J. Thermofluids
22
,
100705
(
2024
).
14.
Sharma
,
A. K.
,
A. K.
Tiwari
, and
A. R.
Dixit
, “
Rheological behaviour of nanofluids: A review
,”
Renewable Sustainable Energy Rev.
53
,
779
791
(
2016
).
15.
Cai
,
X.
,
Y.
Luo
,
B.
Liu
, and
H.-M.
Cheng
, “
Preparation of 2D material dispersions and their applications
,”
Chem. Soc. Rev.
47
,
6224
6266
(
2018
).
16.
Gimenes Benega
,
M. A.
,
W. M.
Silva
,
M. C.
Schnitzler
,
R. J.
Espanhol Andrade
, and
H.
Ribeiro
, “
Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials—A brief landscape
,”
Polym. Test.
98
,
107180
(
2021
).
17.
Ribeiro
,
H.
,
W. M.
da Silva
,
J. C.
Neves
,
H. D. R.
Calado
,
R.
Paniago
,
L. M.
Seara
,
D. D.
Mercês Camarano
, and
G. G.
Silva
, “
Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy
,”
Polym. Test.
43
,
182
192
(
2015
).
18.
Kuila
,
T.
,
S.
Bose
,
A. K.
Mishra
,
P.
Khanra
,
N. H.
Kim
, and
J. H.
Lee
, “
Chemical functionalization of graphene and its applications
,”
Prog. Mater. Sci.
57
,
1061
1105
(
2012
).
19.
Naficy
,
S.
,
R.
Jalili
,
S. H.
Aboutalebi
,
R. A.
Gorkin
, III
,
K.
Konstantinov
,
P. C.
Innis
,
G. M.
Spinks
,
P.
Poulin
, and
G. G.
Wallace
, “
Graphene oxide dispersions: Tuning rheology to enable fabrication
,”
Mater. Horiz.
1
,
326
331
(
2014
).
20.
Kumar
,
P.
,
U. N.
Maiti
,
K. E.
Lee
, and
S. O.
Kim
, “
Rheological properties of graphene oxide liquid crystal
,”
Carbon
80
,
453
461
(
2014
).
21.
Hadadian
,
M.
,
E. K.
Goharshadi
, and
A.
Youssefi
, “
Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids
,”
J. Nanopart. Res.
16
,
2788
2804
(
2014
).
22.
Wang
,
B.
,
J.
Hao
, and
H.
Li
, “
Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure
,”
Dalton Trans.
42
,
5866
5873
(
2013
).
23.
Ijam
,
A.
,
R.
Saidur
,
P.
Ganesan
, and
A.
Moradi Golsheikh
, “
Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid
,”
Int. J. Heat Mass Transfer
87
,
92
103
(
2015
).
24.
Wang
,
M.
,
Y.
Niu
,
J.
Zhou
,
H.
Wen
,
Z.
Zhang
,
D.
Luo
,
D.
Gao
,
J.
Yang
,
D.
Liang
, and
Y.
Li
, “
The dispersion and aggregation of graphene oxide in aqueous media
,”
Nanoscale
8
,
14587
14592
(
2016
).
25.
Vallés
,
C.
,
R. J.
Young
,
D. J.
Lomax
, and
I. A.
Kinloch
, “
The rheological behaviour of concentrated dispersions of graphene oxide
,”
J. Mater. Sci.
49
,
6311
6320
(
2014
).
26.
Lin
,
F.
,
X.
Tong
,
Y.
Wang
,
J.
Bao
, and
Z. M.
Wang
, “
Graphene oxide liquid crystals: Synthesis, phase transition, rheological property, and applications in optoelectronics and display
,”
Nanoscale Res. Lett.
10
,
435
450
(
2015
).
27.
Narimani
,
A.
,
F.
Kordnejad
,
P.
Kaur
,
S.
Bazgir
,
M.
Hemmati
, and
A.
Duong
, “
Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
,”
J. Polym. Eng.
41
,
788
798
(
2021
).
28.
Moraes
,
L. R. C.
,
H.
Ribeiro
,
E.
Cargnin
,
R. J. E.
Andrade
, and
M. F.
Naccache
, “
Rheology of graphene oxide suspended in yield stress fluid
,”
J. Non-Newtonian Fluid Mech.
286
,
104426
(
2020
).
29.
Aliabadian
,
E.
,
S.
Sadeghi
,
A.
Rezvani Moghaddam
,
B.
Maini
,
Z.
Chen
, and
U.
Sundararaj
, “
Application of graphene oxide nanosheets and HPAM aqueous dispersion for improving heavy oil recovery: Effect of localized functionalization
,”
Fuel
265
,
116918
(
2020
).
30.
Shu
,
R.
,
Q.
Yin
,
H.
Xing
,
D.
Tan
,
Y.
Gan
, and
G.
Xu
, “
Colloidal and rheological behavior of aqueous graphene oxide dispersions in the presence of poly(ethylene glycol)
,”
Colloids Surf. A
488
,
154
161
(
2016
).
31.
Shang
,
Y.
,
D.
Zhang
,
C.
Yang
,
Y.
Liu
, and
Y.
Liu
, “
Effect of graphene oxide on the rheological properties of cement pastes
,”
Constr. Build. Mater.
96
,
20
28
(
2015
).
32.
Haruna
,
M. A.
,
S.
Pervaiz
,
Z.
Hu
,
E.
Nourafkan
, and
D.
Wen
, “
Improved rheology and high-temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet
,”
J. Appl. Polym. Sci.
136
,
47582
(
2019
).
33.
Moraes
,
L. R. C.
,
H.
Ribeiro
,
R. J. E.
Andrade
, and
M. F.
Naccache
, “
Rheology of amino-functionalized graphene oxide suspensions in hydrogels
,”
Phys. Fluids
36
,
013122
(
2024
).
34.
Rafieefar
,
A.
,
F.
Sharif
,
A.
Hashemi
, and
A. M.
Bazargan
, “
Rheological behavior and filtration of water-based drilling fluids containing graphene oxide: Experimental measurement, mechanistic understanding, and modeling
,”
ACS Omega
6
,
29905
29920
(
2021
).
35.
Medhi
,
S.
,
S.
Chowdhury
,
N.
Bhatt
,
D. K.
Gupta
,
S.
Rana
, and
J. S.
Sangwai
, “
Analysis of high performing graphene oxide nanosheets based non-damaging drilling fluids through rheological measurements and CFD studies
,”
Powder Technol.
377
,
379
395
(
2021
).
36.
Zamora-Ledezma
,
C.
,
C.
Narváez-Muñoz
,
V. H.
Guerrero
,
E.
Medina
, and
L.
Meseguer-Olmo
, “
Nanofluid formulations based on two-dimensional nanoparticles, their performance, and potential application as water-based drilling fluids
,”
ACS Omega
7
,
20457
20476
(
2022
).
37.
Ikram
,
R.
,
B.
Mohamed Jan
,
J.
Vejpravova
,
M. I.
Choudhary
, and
Z.
Zaman Chowdhury
, “
Recent advances of graphene-derived nanocomposites in water-based drilling fluids
,”
Nanomaterials
10
,
2004
2028
(
2020
).
38.
Karakosta
,
K.
,
A. C.
Mitropoulos
, and
G. Z.
Kyzas
, “
A review in nanopolymers for drilling fluids applications
,”
J. Mol. Struct.
1227
,
129702
(
2021
).
39.
Collins
,
I. R.
,
D.
Cano Floriano
,
I.
Paevskiy
,
J.
Wee
,
E. S.
Boek
, and
M. K.
Mohammadi
, “
Transition from oil & gas drilling fluids to geothermal drilling fluids
,”
Geoenergy Sci. Eng.
233
,
212543
(
2024
).
40.
Reinoso
,
D.
,
M.
Martín-Alfonso
,
P.
Luckham
, and
F.
Martínez-Boza
, “
Flow behavior and thermal resistance of xanthan gum in formate brine
,”
J. Pet. Sci. Eng.
188
,
106881
(
2020
).
41.
Milas
,
M.
, and
M.
Rinaudo
, “
Properties of xanthan gum in aqueous solutions: Role of the conformational transition
,”
Carbohydr. Res.
158
,
191
204
(
1986
).
42.
Palaniraj
,
A.
, and
V.
Jayaraman
, “
Production, recovery and applications of xanthan gum by Xanthomonas campestris
,”
J. Food Eng.
106
,
1
12
(
2011
).
43.
Chen
,
J.
,
B.
Yao
,
C.
Li
, and
G.
Shi
, “
An improved hummers method for eco-friendly synthesis of graphene oxide
,”
Carbon
64
,
225
229
(
2013
).
44.
Marcano
,
D. C.
,
D. V.
Kosynkin
,
J. M.
Berlin
,
A.
Sinitskii
,
Z.
Sun
,
A.
Slesarev
,
L. B.
Alemany
,
W.
Lu
, and
J. M.
Tour
, “
Improved synthesis of graphene oxide
,”
ACS Nano
4
,
4806
4814
(
2010
).
45.
Varges
,
P. R.
,
P. E.
Azevedo
,
B. S.
Fonseca
,
P. R.
de Souza Mendes
,
M. F.
Naccache
, and
A. L.
Martins
, “
Immiscible liquid-liquid displacement flows in a Hele-Shaw cell including shear thinning effects
,”
Phys. Fluids
32
,
013105
(
2020
).
46.
Varges
,
P. R.
,
C. M.
Costa
,
B. S.
Fonseca
,
M. F.
Naccache
, and
P.
De Souza Mendes
, “
Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions
,”
Fluids
4
,
3
22
(
2019
).
47.
Wang
,
C.-S.
,
N.
Virgilio
,
P. J.
Carreau
, and
M.-C.
Heuzey
, “
Understanding the effect of conformational rigidity on rheological behavior and formation of polysaccharide-based hybrid hydrogels
,”
Biomacromolecules
22
,
4016
4026
(
2021
).
48.
Nsengiyumva
,
E. M.
, and
P.
Alexandridis
, “
Xanthan gum in aqueous solutions: Fundamentals and applications
,”
Int. J. Biol. Macromol.
216
,
583
604
(
2022
).
49.
Dário
,
A. F.
,
L. M.
Hortêncio
,
M. R.
Sierakowski
,
J. C. Q.
Neto
, and
D. F.
Petri
, “
The effect of calcium salts on the viscosity and adsorption behavior of xanthan
,”
Carbohydr. Polym.
84
,
669
676
(
2011
).
50.
Long
,
Z.
,
Q.
Zhao
,
T.
Liu
,
W.
Kuang
,
J.
Xu
, and
M.
Zhao
, “
Influence of xanthan gum on physical characteristics of sodium caseinate solutions and emulsions
,”
Food Hydrocoll.
32
,
123
129
(
2013
).
51.
Fu
,
X.
,
J.
Lin
,
Z.
Liang
,
R.
Yao
,
W.
Wu
,
Z.
Fang
,
W.
Zou
,
Z.
Wu
,
H.
Ning
, and
J.
Peng
, “
Graphene oxide as a promising nanofiller for polymer composite
,”
Surf. Interfaces
37
,
102747
(
2023
).
52.
Andrade
,
C. S.
,
A. P. S.
Godoy
,
M. A. G.
Benega
,
R. J.
Andrade
,
R. C.
Andrade
,
W. M.
Silva
,
J. M. D. O.
Cremonezzi
,
W. A. D. A.
Macedo
,
P. L.
Gastelois
,
H.
Ribeiro
et al., “
Micro scalable graphene oxide productions using controlled parameters in bench reactor
,”
Nanomaterials
11
,
1975
1985
(
2021
).
53.
Caggioni
,
M.
,
V.
Trappe
, and
P. T.
Spicer
, “
Variations of the Herschel–Bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials
,”
J. Rheol.
64
,
413
422
(
2020
).
54.
Li
,
B.
,
Y.
Guo
,
P.
Steeman
,
M.
Bulters
, and
W.
Yu
, “
Shear-induced breakdown and agglomeration in nanoparticles filled polymer: The shift of phase boundary and kinetics
,”
J. Rheol.
65
,
291
309
(
2021
).
55.
Park
,
M.
, and
H. S.
Lee
, “
Rotational motions of repulsive graphene oxide domains in aqueous dispersion during slow shear flow
,”
J. Rheol.
64
,
29
41
(
2020
).
56.
Nsengiyumva
,
E. M.
,
M. P.
Heitz
, and
P.
Alexandridis
, “
Salt and temperature effects on xanthan gum polysaccharide in aqueous solutions
,”
Int. J. Mol. Sci.
25
,
490
507
(
2024
).
57.
Dentini
,
M.
,
V.
Crescenzi
, and
D.
Blasi
, “
Conformational properties of xanthan derivatives in dilute aqueous solution
,”
Int. J. Biol. Macromol.
6
,
93
98
(
1984
).
58.
Zhang
,
Q.
,
J.
Mao
,
X.
Yang
,
C.
Lin
,
H.
Zhang
,
T.
Xu
, and
Q.
Wang
, “
Synthesis of a hydrophobic association polymer with an inner salt structure for fracture fluid with ultra-high-salinity water
,”
Colloids Surf., A
636
,
128062
(
2022
).
59.
Samanta
,
A.
,
A.
Bera
,
K.
Ojha
, and
A.
Mandal
, “
Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions
,”
J. Chem. Eng. Data
55
,
4315
4322
(
2010
).
60.
Buitrago-Rincon
,
D.
,
V.
Sadtler
,
R.
Mercado
,
T.
Roques-Carmes
,
L.
Benyahia
,
A.
Durand
,
K.
Ferji
,
P.
Marchal
,
J.
Pedraza-Avella
, and
C.
Lemaitre
, “
Effect of silica nanoparticles in xanthan gum solutions: Evolution of viscosity over time
,”
Nanomaterials
12
,
1906
1919
(
2022
).
61.
Bercea
,
M.
, and
S.
Morariu
, “
Real-time monitoring the order-disorder conformational transition of xanthan gum
,”
J. Mol. Liq.
309
,
113168
(
2020
).
62.
Pelletier
,
E.
,
C.
Viebke
,
J.
Meadows
, and
P. A.
Williams
, “
A rheological study of the order-disorder conformational transition of xanthan gum
,”
Biopolymers
59
,
339
346
(
2001
).
63.
Ross-Murphy
,
S. B.
, “
Structure–property relationships in food biopolymer gels and solutions
,”
J. Rheol.
39
,
1451
1463
(
1995
).
64.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newtonian Fluid Mech.
107
,
51
65
(
2002
).
65.
Suter
,
J. L.
, and
P. V.
Coveney
, “
Principles governing control of aggregation and dispersion of aqueous graphene oxide
,”
Sci. Rep.
11
,
22460
(
2021
).
66.
Tseng
,
Y.-C.
,
Y.-C.
Hsieh
,
N.-Y.
Chin
,
W.-Y.
Huang
,
S.-S.
Hou
, and
J.-S.
Jan
, “
Synthesis, thermal properties and rheological behaviors of novel poly(ethylene glycol) segmented poly(arylene ether)s
,”
Polymer
196
,
122426
(
2020
).
67.
Pajic-Lijakovic
,
I.
, and
M.
Milivojevic
, “
Jamming state transition and collective cell migration
,”
J. Biol. Eng.
13
,
73
84
(
2019
).
68.
Choppe
,
E.
,
F.
Puaud
,
T.
Nicolai
, and
L.
Benyahia
, “
Rheology of xanthan solutions as a function of temperature, concentration and ionic strength
,”
Carbohydr. Polym.
82
,
1228
1235
(
2010
).
69.
Reinoso
,
D.
,
M.
Martín-Alfonso
,
P.
Luckham
, and
F.
Martínez-Boza
, “
Rheological characterisation of xanthan gum in brine solutions at high temperature
,”
Carbohydr. Polym.
203
,
103
109
(
2019
).
70.
Duffy
,
J.
, “Measuring the rheology of polymer solutions,” Technical Report, Malvern Instruments Limited (2015), see https://www.pharmaceutical-business-review.com/suppliers/malvern__instruments__particle__size__analysis__measurement__solutions/#white-papers.
71.
Mothé
,
C. G.
,
D. Z.
Correia
,
F. P.
de França
, and
A. T.
Riga
, “
Thermal and rheological study of polysaccharides for enhanced oil recovery
,”
J. Therm. Anal. Calorim.
85
,
31
36
(
2006
).
72.
Xu
,
L.
,
G.
Xu
,
T.
Liu
,
Y.
Chen
, and
H.
Gong
, “
The comparison of rheological properties of aqueous welan gum and xanthan gum solutions
,”
Carbohydr. Polym.
92
,
516
522
(
2013
).
73.
Gbadamosi
,
A. O.
,
R.
Junin
,
M. A.
Manan
,
A.
Agi
,
J. O.
Oseh
, and
J.
Usman
, “
Synergistic application of aluminium oxide nanoparticles and oilfield polyacrylamide for enhanced oil recovery
,”
J. Pet. Sci. Eng.
182
,
106345
(
2019
).
74.
Sworn
,
G.
, “Xanthan gum,” in Handbook of Hydrocolloids (Elsevier, New York, 2021), pp. 833–853.
75.
Sarvestani
,
A. S.
, and
E.
Jabbari
, “
Modeling the viscoelastic response of suspension of particles in polymer solution: The effect of polymer-particle interactions
,”
Macromol. Theory Simul.
16
,
378
385
(
2007
).
76.
Song
,
Y.
,
Q.
Zheng
, and
Q.
Cao
, “
On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers
,”
J. Rheol.
53
,
1379
1388
(
2009
).
77.
Briscoe
,
B.
,
P.
Luckham
, and
S.
Zhu
, “
The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions
,”
Polymer
41
,
3851
3860
(
2000
).
78.
Briscoe
,
B.
,
P.
Luckham
, and
S.
Zhu
, “
Rheological study of poly(ethylene oxide) in aqueous salt solutions at high temperature and pressure
,”
Macromolecules
29
,
6208
6211
(
1996
).
79.
Ahuja
,
A.
,
R.
Lee
, and
Y. M.
Joshi
, “
Advances and challenges in the high-pressure rheology of complex fluids
,”
Adv. Colloid Interface Sci.
294
,
102472
(
2021
).
80.
Liao
,
Y.
,
Y.
Hu
,
Y.
Tan
,
K.
Ikeda
,
R.
Okabe
,
R.
Wu
,
R.
Ozaki
, and
Q.
Xu
, “
Measurement techniques and methods for the pressure coefficient of viscosity of polymer melts
,”
Adv. Polym. Technol.
2023
,
1
15
(
2023
).
81.
Shaw
,
M. T.
, “
On finding the zero-shear-rate viscosity of polymer melts
,”
Polym. Eng. Sci.
61
,
1166
1178
(
2021
).
82.
Yasuda
,
K.
, “
A multi-mode viscosity model and its applicability to non-Newtonian fluids
,”
J. Text. Eng.
52
,
171
173
(
2006
).
83.
Stadler
,
F. J.
, and
H.
Münstedt
, “
Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes
,”
J. Non-Newtonian Fluid Mech.
151
,
129
135
(
2008
).
84.
Steller
,
R.
, and
J.
Iwko
, “
New generalized Newtonian fluid models for quantitative description of complex viscous behavior in shear flows
,”
Polym. Eng. Sci.
58
,
1446
1455
(
2018
).
85.
Hopmann
,
C.
,
B.
Twardowski
, and
C.
Bakir
, “
Limitations of reptation theory for modeling the stress-dependent rheological behavior of polyethylene terephthalate above the glass-transition temperature
,”
Polym. Eng. Sci.
60
,
765
772
(
2020
).
86.
Ricarte
,
R. G.
, and
S.
Shanbhag
, “
A tutorial review of linear rheology for polymer chemists: Basics and best practices for covalent adaptable networks
,”
Polym. Chem.
15
,
815
846
(
2024
).
87.
Ferry
,
J. D.
, and
H. S.
Myers
, “
Viscoelastic properties of polymers
,”
J. Electrochem. Soc.
108
,
142C
(
1961
).
88.
Maiti
,
A.
, “
A geometry-based approach to determining time-temperature superposition shifts in aging experiments
,”
Rheol. Acta
55
,
83
90
(
2016
).
89.
Nickerson
,
M.
,
A.
Paulson
, and
R.
Speers
, “
A time–temperature rheological approach for examining food polymer gelation
,”
Trends Food Sci. Technol.
15
,
569
574
(
2004
).
90.
Guedes
,
R. M.
, “
A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time–temperature superposition principle
,”
Polym. Test.
30
,
294
302
(
2011
).
91.
Chae
,
S.-H.
,
J.-H.
Zhao
,
D. R.
Edwards
, and
P. S.
Ho
, “
Characterization of the viscoelasticity of molding compounds in the time domain
,”
J. Electron. Mater.
39
,
419
425
(
2010
).
92.
Al-Dhaheri
,
M. A.
,
W. J.
Cantwell
,
I.
Barsoum
, and
R.
Umer
, “
Characterization of relaxation behaviour of CF/PEKK aerospace composites using the time-temperature-crystallinity superposition principle
,”
J. Compos. Mater.
58
,
2061
2077
(
2024
).
93.
Sullivan
,
J.
, “
Creep and physical aging of composites
,”
Compos. Sci. Technol.
39
,
207
232
(
1990
).
94.
Xue
,
S.
,
J.
Yan
,
Y.
Du
,
X.
Jiang
,
S.
Xu
, and
H.
Wu
, “
Synergistic gelation in the hybrid gel of scallop (Patinopecten yessoensis) male gonad hydrolysates and xanthan gum
,”
J. Food Sci.
86
,
2024
2034
(
2021
).
95.
Rupenthal
,
I. D.
,
C. R.
Green
, and
R. G.
Alany
, “
Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release
,”
Int. J. Pharm.
411
,
69
77
(
2011
).
96.
Moffat
,
J.
,
V. J.
Morris
,
S.
Al-Assaf
, and
A. P.
Gunning
, “
Visualisation of xanthan conformation by atomic force microscopy
,”
Carbohydr. Polym.
148
,
380
389
(
2016
).
97.
Ivashchenko
,
O.
, “
Cryo-SEM and confocal LSM studies of agar gel, nanoparticle hydrocolloid, mineral clays and saline solutions
,”
Sci. Rep.
12
,
9930
9944
(
2022
).
You do not currently have access to this content.