Entangled polymers are an important class of materials for their toughness, processability, and functionalizability. During processing, deformation introduces elastic stresses due to a combination of polymer orientation and polymer stretching. For many flows, however, the elastic contribution from chain stretching is not significant, and so-called “nonstretching” approximations have been developed to help explain and interpret experimental observations. Unfortunately, these nonstretching models tend to be limited to simple polymer formulations (linear and monodisperse) and are not useful for understanding any effects from marginal chain stretching that may be present. In this paper, we show that nonstretching approximations can be formally constructed as a perturbation expansion starting from a fully stretching constitutive equation. We apply this framework to the Rolie-Poly model, deriving the existing nonstretching variation and expanding to the second order. The second-order continuation provides quantitatively improved accuracy for both steady and unsteady flows and prevents a pathological/nonphysical blowup that can occur when effects from marginal chain stretching are ignored. We also derive and discuss leading order nonstretching approximations for more complex models of entangled polymers, accounting for disentanglement dynamics, polydispersity, and reversible scission reactions. Alternatives to the formal perturbation framework are also discussed, with potential trade-offs between accuracy, versatility, and computational cost.

1.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
(
1
),
1
12
(
2003
).
2.
Peterson
,
J. D.
,
M.
Cromer
,
G. H.
Fredrickson
, and
L.
Gary Leal
, “
Shear banding predictions for the two-fluid Rolie-Poly model
,”
J. Rheol.
60
(
5
),
927
951
(
2016
).
3.
Peterson
,
J. D.
,
G. H.
Fredrickson
, and
L.
Gary Leal
, “
Does shear induced demixing resemble a thermodynamically driven instability?
J. Rheol.
63
(
2
),
335
359
(
2019
).
4.
Peterson
,
J. D.
, and
L.
Gary Leal
, “
Predictions for flow-induced scission in well-entangled living polymers: The living Rolie–Poly model
,”
J. Rheol.
65
(
2
),
959
982
(
2021
).
5.
Peterson
,
J. D.
, and
M. E.
Cates
, “
Constitutive models for well-entangled living polymers beyond the fast-breaking limit
,”
J. Rheol.
65
(
4
),
633
662
(
2021
).
6.
Dolata
,
B. E.
, and
P. D.
Olmsted
, “
A thermodynamically consistent constitutive equation describing polymer disentanglement under flow
,”
J. Rheol.
67
(
1
),
269
292
(
2023
).
7.
Boudara
,
V. A. H.
,
J. D.
Peterson
,
L.
Gary Leal
, and
D. J.
Read
, “
Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-Double-Poly models
,”
J. Rheol.
63
(
1
),
71
91
(
2019
).
8.
Kabanemi
,
K. K.
, and
J.-F.
Hétu
, “
Nonequilibrium stretching dynamics of dilute and entangled linear polymers in extensional flow
,”
J. Non-Newtonian Fluid Mech.
160
(
2–3
),
113
121
(
2009
).
9.
De Gennes
,
P.-G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
(
2
),
572
579
(
1971
).
10.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 3. The constitutive equation
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1818
1832
(
1978
).
11.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford, UK
,
1988
), Vol. 73.
12.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
(
5
),
1171
1200
(
2003
).
13.
Shen
,
Z.
,
Y.
Gong
, and
R. G.
Larson
, “
Linking polymer architecture to bubble shape in LDPE film blowing through multistage modeling
,”
J. Rheol.
68
(
1
),
25
38
(
2024
).
14.
Adams
,
J. M.
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the Rolie-Poly model
,”
J. Rheol.
55
(
5
),
1007
1032
(
2011
).
15.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Shear banding in time-dependent flows of polymers and wormlike micelles
,”
J. Rheol.
58
(
1
),
103
147
(
2014
).
16.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Onset of transient shear banding in viscoelastic shear start-up flows: Implications from linearized dynamics
,”
J. Rheol.
65
(
6
),
1391
1412
(
2021
).
17.
Moorcroft
,
R. L.
, and
S. M.
Fielding
, “
Criteria for shear banding in time-dependent flows of complex fluids
,”
Phys. Rev. Lett.
110
(
8
),
086001
(
2013
).
18.
Stephanou
,
P. S.
, “
Variable entanglement density constitutive rheological model for polymeric fluids
,”
Rheol. Acta
63
,
379
395
(
2024
).
19.
Drucker
,
C. T.
, and
J. D.
Peterson
, “
Definite example of negative entropy production in the Rolie Poly model
,”
J. Rheol.
68
(
3
),
355
360
(
2024
).
20.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
A simple constitutive equation for entangled polymers with chain stretch
,”
J. Rheol.
45
(
6
),
1305
1318
(
2001
).
21.
Drucker
,
C. T.
, and
J. D.
Peterson
, “
A study of regularization errors in a thermodynamically consistent Rolie-Poly model
,”
Rheol. Acta
64
,
1
6
(
2024
).
22.
Renardy
,
Y.
, and
M.
Renardy
, “
A singular perturbation study of the Rolie-Poly model
,”
J. Non-Newtonian Fluid Mech.
262
,
52
67
(
2018
).
23.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: from Structure to Flow Behavior and Back Again
(
Carl Hanser
,
Cincinnati, OH
,
2018
).
24.
McKinley
,
G. H.
,
P.
Pakdel
, and
A.
Öztekin
, “
Rheological and geometric scaling of purely elastic flow instabilities
,”
J. Non-Newtonian Fluid Mech.
67
,
19
47
(
1996
).
25.
Likhtman
,
A. E.
,
S. T.
Milner
, and
T. C. B.
McLeish
, “
Microscopic theory for the fast flow of polymer melts
,”
Phys. Rev. Lett.
85
(
21
),
4550
4553
(
2000
).
26.
Milner
,
S. T.
,
T. C. B.
McLeish
, and
A. E.
Likhtman
, “
Microscopic theory of convective constraint release
,”
J. Rheol.
45
(
2
),
539
563
(
2001
).
27.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
Convective constraint release (CCR) revisited
,”
J. Rheol.
58
(
1
),
89
102
(
2014
).
28.
O’Connor
,
T. C.
,
A.
Hopkins
, and
M. O.
Robbins
, “
Stress relaxation in highly oriented melts of entangled polymers
,”
Macromolecules
52
(
22
),
8540
8550
(
2019
).
29.
Carrot
,
C.
, and
J.
Guillet
, “
From dynamic moduli to molecular weight distribution: A study of various polydisperse linear polymers
,”
J. Rheol.
41
(
5
),
1203
1220
(
1997
).
30.
Cates
,
M. E.
, “
Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions
,”
Macromolecules
20
(
9
),
2289
2296
(
1987
).
You do not currently have access to this content.