The addition of a small quantity of flexible fibers in a granular material is an efficient technique to increase the yield stress of the material. While the influence of fiber addition on the mechanical strength of granular media has been studied, much less is known about the flow properties of grain-fiber mixtures. In this article, we explore the effect of flexible fibers on the flow behavior of grain-fiber mixtures above the yield stress. We use a vane geometry to study the rheology of a dry granular material mixed with flexible fibers with different volume fractions and properties. The vane is immersed in the material, and the granular pressure increases with the depth of immersion. When the vane begins rotating, we observe a transient regime, which depends on the number of blades and is associated with the mobilization of material between the blades. Following this transient phase, a stationary regime is reached. By measuring and modeling the stationary flow that develops around the vane, we deduce the effective friction coefficient of the material from the torque measured on the vane. Following this approach, we investigate the effect of the fiber volume fraction and the aspect ratio on the effective friction coefficient of the grain-fiber mixture. Our results show that the effective friction coefficient increases linearly with the fiber volume fraction and exponentially with a fiber aspect ratio. These findings provide new fundamental insights into the flow properties of grain-fiber mixtures.

1.
Imran
,
M. A.
,
K.
Nakashima
,
N.
Evelpidou
, and
S.
Kawasaki
, “
Durability improvement of biocemented sand by fiber-reinforced MICP for coastal erosion protection
,”
Materials
15
,
2389
(
2022
).
2.
Sharma
,
J.
,
S.
Tiwari
, and
J.
Yadav
, “
Behaviour of dune sand and its stabilization techniques
,”
J. Adv. Res. Appl. Mech.
19
,
1
15
(
2016
).
3.
Hernlund
,
E.
,
Sport Surfaces in Show Jumping
(
Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences
,
Uppsala
,
2016
).
4.
Yetgin
,
Ş.
,
Ö.
Çavdar
, and
A.
Çavdar
, “
The effects of the fiber contents on the mechanic properties of the adobes
,”
Constr. Build. Mater.
22
,
222
227
(
2008
).
5.
Shukla
,
S. K.
,
Fundamentals of Fibre-Reinforced Soil Engineering
(
Springer
,
Perth
,
2017
).
6.
Gray
,
D. H.
, and
H.
Ohashi
, “
Mechanics of fiber reinforcement in sand
,”
J. Geotech. Eng.
109
,
335
353
(
1983
).
7.
Maher
,
M. H.
, and
D. H.
Gray
, “
Static response of sands reinforced with randomly distributed fibers
,”
J. Geotech. Eng.
116
,
1661
1677
(
1990
).
8.
Diambra
,
A.
,
E.
Ibraim
,
D. M.
Wood
, and
A.
Russell
, “
Fibre reinforced sands: Experiments and modelling
,”
Geotext. Geomembr.
28
,
238
250
(
2010
).
9.
Ahmad
,
F.
,
F.
Bateni
, and
M.
Azmi
, “
Performance evaluation of silty sand reinforced with fibres
,”
Geotext. Geomembr.
28
,
93
99
(
2010
).
10.
Li
,
Y.
,
Q.
Zhang
,
X.
Hua
,
Y.
Guo
, and
J. S.
Curtis
, “
Fiber reinforcement on spherical granular beds under triaxial compressions
,”
Powder Technol.
411
,
117928
(
2022
).
11.
Banfill
,
P.
,
G.
Starrs
,
G.
Derruau
,
W.
McCarter
, and
T.
Chrisp
, “
Rheology of low carbon fibre content reinforced cement mortar
,”
Cem. Concr. Compos.
28
,
773
780
(
2006
).
12.
Hossain
,
K.
,
M.
Lachemi
,
M.
Sammour
, and
M.
Sonebi
, “
Influence of polyvinyl alcohol, steel, and hybrid fibers on fresh and rheological properties of self-consolidating concrete
,”
J. Mater. Civ. Eng.
24
,
1211
1220
(
2012
).
13.
Abdelrazik
,
A. T.
, and
K. H.
Khayat
, “
Effect of fiber characteristics on fresh properties of fiber-reinforced concrete with adapted rheology
,”
Constr. Build. Mater.
230
,
116852
(
2020
).
14.
Anas
,
M.
,
M.
Khan
,
H.
Bilal
,
S.
Jadoon
, and
M. N.
Khan
, “
Fiber reinforced concrete: A review
,”
Eng. Proc.
22
,
3
(
2022
).
15.
Jop
,
P.
,
Y.
Forterre
, and
O.
Pouliquen
, “
A constitutive law for dense granular flows
,”
Nature
441
,
727
730
(
2006
).
16.
Forterre
,
Y.
, and
O.
Pouliquen
, “
Flows of dense granular media
,”
Annu. Rev. Fluid Mech.
40
,
1
24
(
2008
).
17.
Boyer
,
F.
,
É.
Guazzelli
, and
O.
Pouliquen
, “
Unifying suspension and granular rheology
,”
Phys. Rev. Lett.
107
,
188301
(
2011
).
18.
Tapia
,
F.
,
O.
Pouliquen
, and
É.
Guazzelli
, “
Influence of surface roughness on the rheology of immersed and dry frictional spheres
,”
Phys. Rev. Fluids
4
,
104302
(
2019
).
19.
Pouliquen
,
O.
, and
Y.
Forterre
, “
A non-local rheology for dense granular flows
,”
Philos. Trans. R. Soc. A
367
,
5091
5107
(
2009
).
20.
Ovarlez
,
G.
,
F.
Mahaut
,
F.
Bertrand
, and
X.
Chateau
, “
Flows and heterogeneities with a vane tool: Magnetic resonance imaging measurements
,”
J. Rheol.
55
,
197
223
(
2011
).
21.
Daniel
,
R. C.
,
A. P.
Poloski
, and
A. E.
Saez
, “
Vane rheology of cohesionless glass beads
,”
Powder Technol.
181
,
237
248
(
2008
).
22.
Qi
,
F.
,
S. K.
de Richter
,
M.
Jenny
, and
B.
Peters
, “
Dem simulation of dense granular flows in a vane shear cell: Kinematics and rheological laws
,”
Powder Technol.
366
,
722
735
(
2020
).
23.
Hsiau
,
S.-S.
, and
W.-L.
Yang
, “
Stresses and transport phenomena in sheared granular flows with different wall conditions
,”
Phys. Fluids
14
,
612
621
(
2002
).
24.
Seguin
,
A.
,
Y.
Bertho
, and
P.
Gondret
, “
Influence of confinement on granular penetration by impact
,”
Phys. Rev. E
78
,
010301
(
2008
).
25.
Ibraim
,
E.
, and
S.
Fourmont
, Behaviour of sand reinforced with fibres, in Soil Stress-Strain Behavior: Measurement, Modeling and Analysis: A Collection of Papers of the Geotechnical Symposium, Rome, March 16–17, 2006 (Springer, Dordrecht, 2007), pp. 807–818.
26.
Ibraim
,
E.
,
A.
Diambra
,
A.
Russell
, and
D. M.
Wood
, “
Assessment of laboratory sample preparation for fibre reinforced sands
,”
Geotext. Geomembr.
34
,
69
79
(
2012
).
27.
Soriano
,
I.
,
E.
Ibraim
,
E.
Ando
,
A.
Diambra
,
T.
Laurencin
,
P.
Moro
, and
G.
Viggiani
, “
3D fibre architecture of fibre-reinforced sand
,”
Granul. Matter
19
,
75
(
2017
).
28.
Choobbasti
,
A.J.
,
S.S.
Kutanaei
, and
M.
Ghadakpour
, “
Shear behavior of fiber-reinforced sand composite
,”
Arab. J. Geosci.
12
,
157
(
2019
).
29.
Darvishi
,
A.
, and
A.
Erken
, Effect of polypropylene fiber on shear strength parameters of sand, in Proceedings of the 3rd World Congress, on Civil, Structural, and Environmental Engineering (CSEE’18) (Budapest, Hungary, 2018), pp. 5–12.
30.
Philipse
,
A. P.
, “
The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders
,”
Langmuir
12
,
1127
1133
(
1996
).
31.
Gray
,
J. M. N. T.
, “
Particle segregation in dense granular flows
,”
Annu. Rev. Fluid Mech.
50
,
407
433
(
2018
).
32.
Lehuen
,
J.
,
J.-Y.
Delenne
,
A.
Duri
, and
T.
Ruiz
, “
Forces and flow induced by a moving intruder in a granular packing: Coarse-graining and dem simulations versus experiments
,”
Granul. Matter
22
,
78
(
2020
).
33.
Seguin
,
A.
, “
Hysteresis of the drag force of an intruder moving into a granular medium
,”
Eur. Phys. J. E
42
,
13
(
2019
).
34.
Darbois Texier
,
B.
,
A.
Ibarra
, and
F.
Melo
, “
Propulsion by reciprocal motion into granular media
,”
Phys. Rev. Fluids
6
,
034604
(
2021
).
35.
Faug
,
T.
, “
Macroscopic force experienced by extended objects in granular flows over a very broad froude-number range: Macroscopic granular force on extended object
,”
Eur. Phys. J. E
38
,
34
(
2015
).
36.
Seguin
,
A.
, and
P.
Gondret
, “
Buckling of a rod penetrating into granular media
,”
Phys. Rev. E
98
,
012906
(
2018
).
37.
Prochnow
,
M.
,
F.
Chevoir
, and
M.
Albertelli
, Dense granular flows down a rough inclined plane, in Proceedings, XIIIth International Congress on Rheology, Cambridge, UK (Budapest, Hungary, 2000).
38.
Ertas
,
D.
,
G. S.
Grest
,
T. C.
Halsey
,
D.
Levine
, and
L. E.
Silbert
, “
Gravity-driven dense granular flows
,”
Europhys. Lett.
56
,
214
220
(
2001
).
39.
Bertho
,
Y.
,
F.
Giorgiutti-Dauphiné
, and
J.-P.
Hulin
, “
Dynamical Janssen effect on granular packing with moving walls
,”
Phys. Rev. Lett.
90
,
144301
(
2003
).
40.
Papadopoulos
,
C. E.
, and
H.
Yeung
, “
Uncertainty estimation and Monte Carlo simulation method
,”
Flow. Meas. Instrum.
12
,
291
298
(
2001
).
41.
Losert
,
W.
,
L.
Bocquet
,
T. C.
Lubensky
, and
J. P.
Gollub
, “
Particle dynamics in sheared granular matter
,”
Phys. Rev. Lett.
85
,
1428
(
2000
).
42.
Reddy
,
K.
,
Y.
Forterre
, and
O.
Pouliquen
, “
Evidence of mechanically activated processes in slow granular flows
,”
Phys. Rev. Lett.
106
,
108301
(
2011
).
43.
Artoni
,
R.
,
A.
Soligo
,
J.-M.
Paul
, and
P.
Richard
, “
Shear localization and wall friction in confined dense granular flows
,”
J. Fluid Mech.
849
,
395
418
(
2018
).
44.
Kuwano
,
O.
,
R.
Ando
, and
T.
Hatano
, “
Crossover from negative to positive shear rate dependence in granular friction
,”
Geophys. Res. Lett.
40
,
1295
1299
, https://doi.org/10.1002/grl.50311 (
2013
).
45.
DeGiuli
,
E.
, and
M.
Wyart
, “
Friction law and hysteresis in granular materials
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
9284
9289
(
2017
).
46.
Mandal
,
S.
,
M.
Nicolas
, and
O.
Pouliquen
, “
Rheology of cohesive granular media: Shear banding, hysteresis, and nonlocal effects
,”
Phys. Rev. X
11
,
021017
(
2021
).
47.
Dumont
,
D.
,
M.
Houze
,
P.
Rambach
,
T.
Salez
,
S.
Patinet
, and
P.
Damman
, “
Emergent strain stiffening in interlocked granular chains
,”
Phys. Rev. Lett.
120
,
088001
(
2018
).
48.
Aponte
,
D.
,
N.
Estrada
,
J.
Barés
,
M.
Renouf
, and
E.
Azéma
, “
Geometric cohesion in two-dimensional systems composed of star-shaped particles
,”
Phys. Rev. E
109
,
044908
(
2024
).
49.
Mandal
,
S.
,
M.
Nicolas
, and
O.
Pouliquen
, “
Insights into the rheology of cohesive granular media
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
8366
8373
(
2020
).
50.
Deboeuf
,
S.
, and
A.
Fall
, “
Cohesion and aggregates in unsaturated wet granular flows down a rough incline
,”
J. Rheol.
67
,
909
(
2023
).
51.
Kong
,
Y.
,
A.
Zhou
,
F.
Shen
, and
Y.
Yao
, “
Stress–dilatancy relationship for fiber-reinforced sand and its modeling
,”
Acta Geotech.
14
,
1871
1881
(
2019
).
52.
Szypcio
,
Z.
,
K.
Dołżyk-Szypcio
, and
I.
Chmielewska
, “
Stress–dilatancy behaviourof fibre-reinforced sand
,”
Materials
16
,
609
(
2023
).
53.
Alarcón
,
H.
,
T.
Salez
,
C.
Poulard
,
J.-F.
Bloch
,
É.
Raphaël
,
K.
Dalnoki-Veress
, and
F.
Restagno
, “
Self-amplification of solid friction in interleaved assemblies
,”
Phys. Rev. Lett.
116
,
015502
(
2016
).
54.
Seguin
,
A.
, and
J.
Crassous
, “
Twist-controlled force amplification and spinning tension transition in yarn
,”
Phys. Rev. Lett.
128
,
078002
(
2022
).
55.
Johnson
,
K. L.
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
1987
).
56.
Lobo-Guerrero
,
S.
, and
L. E.
Vallejo
, “
Fibre-reinforcement of granular materials: DEM visualisation and analysis
,”
Geomech. Geoeng.
5
,
79
89
(
2010
).
57.
Bourrier
,
F.
,
F.
Kneib
,
B.
Chareyre
, and
T.
Fourcaud
, “
Discrete modeling of granular soils reinforcement by plant roots
,”
Ecol. Eng.
61
,
646
657
(
2013
).
58.
Algarra
,
N.
,
P. G.
Karagiannopoulos
,
A.
Lazarus
,
D.
Vandembroucq
, and
E.
Kolb
, “
Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium
,”
Phys. Rev. E
97
,
022901
(
2018
).
59.
Marchetti
,
B.
,
V.
Raspa
,
A.
Lindner
,
O.
Du Roure
,
L.
Bergougnoux
,
E.
Guazzelli
, and
C.
Duprat
, “
Deformation of a flexible fiber settling in a quiescent viscous fluid
,”
Phys. Rev. Fluids
3
,
104102
(
2018
).
60.
Brouzet
,
C.
,
G.
Verhille
, and
P.
Le Gal
, “
Flexible fiber in a turbulent flow: A macroscopic polymer
,”
Phys. Rev. Lett.
112
,
074501
(
2014
).
61.
Audoly
,
B.
, and
Y.
Pomeau
,
“Elasticity and Geometry: From hair curls to the non-linear response of shells,” (Oxford University Press, Oxford, 2010)
.
62.
Grandgeorge
,
P.
,
T. G.
Sano
, and
P. M.
Reis
, “
An elastic rod in frictional contact with a rigid cylinder
,”
J. Mech. Phys. Solids
164
,
104885
(
2022
).
63.
Laaziri
,
M.
,
K.
Benmoussa
,
S.
Khoulji
, and
M. K.
Larbi
(
2018
).
“Outlining an intelligent tutoring system for a University Cooperation Information System,” Zenodo. https://zenodo.org/records/1490596
You do not currently have access to this content.