Lignocellulosic biomass is a feedstock for fuels and chemicals that does not compete with food resources and has less contaminants than refuse-derived biomass feedstocks. To convert lignocellulosics to biofuels or value-added products, multiple processing steps are typically necessary. One method of producing biofuels from lignocellulosic biomass utilizes a deacetylation and mechanical refining pretreatment and an enzymatic hydrolysis reaction to produce fermentable sugars from cellulose and hemicellulose. The rheological properties of biomass, such as yield stress and plastic viscosity, change during enzymatic hydrolysis and alter the energy requirements for pumping and mixing, an important consideration for the design of processing equipment. The dynamic changes in rheological properties that occur in a corn stover feedstock undergoing enzymatic hydrolysis are characterized in this work, and the influence on pressure losses in piping systems is estimated. Two rheometer geometries were fabricated with stereolithography 3D printing to reduce wall slip and sample ejection. The slurries have complex rheological behaviors that include shear-thinning behavior. Shear stress ramps were performed on samples at 20 and 50  °C using the custom geometries, and the Herschel–Bulkley model was fit to the data. The dynamic nature of the rheological properties is correlated with changes in the average fiber length at various extents of reaction, and the influence of solids concentration on the observed rheology and piping pressure losses is discussed.

1.
Dibble
,
C. J.
,
T. A.
Shatova
,
J. L.
Jorgenson
, and
J. J.
Stickel
, “
Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion
,”
Biotechnol. Prog.
27
,
1751
1759
(
2011
).
2.
U.S. Energy Information Administration
. (
2023
). Annual Energy Outlook 2023.
3.
Rex, H.
,
From Biomass to Biofuels: NREL Leads the Way (NREL/BR-510-39436) (National Renewable Energy Laboratory, 2006)
.
4.
U.S. Department of Energy
,
2023 Billion-Ton Report: An Assessment of U.S. Renewable Carbon Resources
,
M. H. Langholtz (Lead) (Oak Ridge National Laboratory, Oak Ridge, TN, 2024), No. ORNL/SPR-2024/3103
.
5.
Sun
,
Y.
, and
J.
Cheng
, “
Hydrolysis of lignocellulosic materials for ethanol production: A review
,”
Bioresour. Technol.
83
,
1
11
(
2002
).
6.
Samaniuk
,
J. R.
,
T. C.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
The influence of polymer adsorption, and fiber composition, on the rheology of aqueous suspensions of aspen, cotton, and corn stover pulps
,”
Biomass Bioenergy
103
,
47
54
(
2017
).
7.
Chen
,
X.
,
E.
Kuhn
,
E. W.
Jennings
,
R.
Nelson
,
L.
Tao
,
M.
Zhang
, and
M. P.
Tucker
, “
Dmr (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g l-1) during enzymatic hydrolysis and high ethanol concentrations ( >10% v/v) during fermentation without hydrolysate purification or concentration
,”
Energy Environ. Sci.
9
,
1163
1171
(
2016
).
8.
Sun
,
S.
,
S.
Sun
,
X.
Cao
, and
R.
Sun
, “
The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials
,”
Bioresour. Technol.
199
,
49
58
(
2016
).
9.
Ostby
,
H.
,
L. D.
Hansen
,
S. J.
Horn
,
V. G. H.
Eijsink
, and
A.
Varnai
, “
Enzymatic processing of lignocellulosic biomass: Principles, recent advances and perspectives
,”
J. Ind. Microbiol. Biotechnol.
47
,
623
657
(
2020
).
10.
Walker
,
L.
, and
D.
Wilson
, “
Enzymatic hydrolysis of cellulose: An overview
,”
Bioresour. Technol.
36
,
3
14
(
1991
).
11.
Duncan
,
J. C.
,
A.
Shahravan
,
J. R.
Samaniuk
,
T. W.
Root
,
M. D.
Graham
,
D. J.
Klingenberg
,
C. T.
Scott
,
K. J.
Bourne
, and
R.
Gleisner
, “
Pressure-driven flow of lignocellulosic biomass: A compressible Bingham fluid
,”
J. Rheol.
62
,
801
815
(
2018
).
12.
Samaniuk
,
J. R.
,
T. W.
Shay
,
T. W.
Root
,
D. J.
Klingenberg
, and
T. C.
Scott
, “
A novel rheometer design for yield stress fluids
,”
AIChE J.
60
,
1523
1528
(
2014
).
13.
Knutsen
,
J. S.
, and
M. W.
Liberatore
, “
Rheology of high-solids biomass slurries for biorefinery applications
,”
J. Rheol.
53
,
877
892
(
2009
).
14.
Samaniuk
,
J. R.
,
J.
Wang
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Rheology of concentrated biomass
,”
Korea-Aust. Rheol. J.
23
,
237
245
(
2011
).
15.
Stickel
,
J. J.
,
J. S.
Knutsen
,
M. W.
Liberatore
,
W.
Luu
,
D. W.
Bousfield
,
D. J.
Klingenberg
,
T. C.
Scott
,
T. W.
Root
,
M. R.
Ehrhardt
, and
T. O.
Monz
, “
Rheology measurements of a biomass slurry: An inter-laboratory study
,”
Rheol. Acta
48
,
1005
1015
(
2009
).
16.
Stickel
,
J. J.
,
J. S.
Knutsen
, and
M. W.
Liberatore
, “
Connecting large amplitude oscillatory shear rheology to steady simple shear rheology and application to biomass slurries
,”
Appl. Rheol.
24
,
53075
(
2014
),
17.
Owens
,
C. E.
,
J. A.
Hart
, and
G. H.
McKinley
, “
Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes
,”
J. Rheol.
64
,
643
662
(
2020
).
18.
Cai
,
H.
,
Z.
Yuan
,
X.
Zhang
,
J.
Shen
,
H.
Zhang
, and
J.
Olson
, “
The influence of consistency and fibre length on the yield stress of OCC pulp fibre suspensions
,”
Bioresources
12
,
8368
8377
(
2017
).
19.
Samaniuk
,
J. R.
,
T. C.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Effects of process variables on the yield stress of rheologically modified biomass
,”
Rheol. Acta
54
,
941
949
(
2015
).
20.
Pimenova
,
N. V.
, and
T. R.
Hanley
, “
Effect of corn stover concentration on rheological characteristics
,”
Appl. Biochem. Biotechnol.
114
,
347
360
(
2004
).
21.
Samaniuk
,
J. R.
,
T. C.
Scott
,
T. W.
Root
, and
D. J.
Klingenberg
, “
Rheological modification of corn stover biomass at high solids concentrations
,”
J. Rheol.
56
,
649
665
(
2012
).
22.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
23.
Bennington
,
C. P. J.
,
R. J.
Kerekes
, and
J. R.
Grace
, “
The yield stress of fibre suspensions
,”
Can. J. Chem. Eng.
68
,
748
757
(
1990
).
24.
Mohseni
,
M.
, and
D. G.
Allen
, “
The effect of particle morphology and concentration on the directly measured yield stress in filamentous suspensions
,”
Biotechnol. Bioeng.
48
,
257
265
(
1995
).
25.
Wikstrorn
,
T.
,
S.
Defibrator
, and
A.
Rasmuson
, “
Yield stress of pulp suspensions: The influence of fibre properties and processing conditions
,”
Nordic Pulp & Paper Res. J.
13
,
243
246
(
1998
).
26.
Martoia
,
R.
,
S.
Gupta
,
P. J. J.
Dumont
, and
L.
Orgeas
, “
Rheology of concentrated and highly concentrated enzymatic cellulose nanofibril hydrogels during lubricated compression
,”
Carbohydr. Polym.
296
,
119911
(
2022
).
27.
Taherzadeh
,
M. J.
, and
K.
Karimi
, “
Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review
,”
Int. J. Mol. Sci.
9
,
1621
1651
(
2008
).
28.
Sun
,
W.
,
M.
Jiang
,
K.
Fan
, and
Z.
Liu
, “
Determination and application of pressure loss in long distance pipeline transportation of paste slurry based on pipe loop experiment
,”
Arch. Min. Sci.
67
,
223
237
(
2022
).
29.
Chien
,
S. F.
, “
Laminar flow pressure loss and flow pattern transition of Bingham plastics in pipes and annuli
,”
Int. J. Rock Mech. Mining Sci. Geomech. Abstr.
7
,
339
356
(
1970
).
30.
Delgado
,
M. A.
,
J. M.
Franco
,
P.
Partal
, and
C.
Gallegos
, “
Experimental study of grease flow in pipelines: Wall slip and air entrainment effects
,”
Chem. Eng. Process. Process Intensif.
44
,
805
817
(
2005
).
31.
Heywood
,
N. I.
, and
D. C. H.
Cheng
, “
Comparison of methods for predicting head loss in turbulent pipe flow of non-newtonian fluids
,”
Transactions of the Institute of Measurement and Control
6
,
33
45
(
1984
).
32.
Sorgun
,
M.
,
T. D.
Muftuoglu
, and
I. H.
Gucuyener
, “
Friction factor estimation for turbulent flow of Herschel-Bulkley and power law fluids in pipes
,”
J. Pet. Sci. Eng.
211
,
110044
(
2022
).
33.
Weiss
,
N. D.
,
J. J.
Stickel
,
J. L.
Wolfe
, and
Q. A.
Nguyen
, “
A simplified method for the measurement of insoluble solids in pretreated biomass slurries
,”
Appl. Biochem. Biotechnol.
162
,
975
987
(
2010
).
34.
Choi
,
J.
, and
S. A.
Rogers
, “
Optimal conditions for pre-shearing thixotropic or aging soft materials
,”
Rheol. Acta
59
,
921
934
(
2020
).
35.
Martínez-Padilla
,
L. P.
, and
D.
Quemada
, “
Baffled cup and end-effects of a vane-in-a-large cup rheometer for newtonian fluids
,”
J. Food Eng.
80
,
24
32
(
2007
).
36.
Gulmus
,
S.
, and
U.
Yilmazer
, “
Effect of volume fraction and particle size on wall slip in flow of polymeric suspensions
,”
J. Appl. Polym. Sci.
98
,
439
448
(
2005
).
37.
Protolabs
,
ABS-Like Translucent/Clear (WaterShed XC 11122) Material Data Sheet (2022)
.
38.
Virtanen
,
P.
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. V. D.
Walt
,
M.
Brett
,
J.
Wilson
,
K.
Millman
,
N.
Mayorov
,
A.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C.
Carey
,
I.
Polat
,
Y.
Feng
,
E.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E.
Quintero
,
C.
Harris
,
A.
Archibald
,
A.
Ribeiro
,
F.
Pedregosa
, and
P. V.
Mulbregt
, “
Scipy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
39.
Valmet Corporation
, Valmet Fiber Image Analyzer FS5 - Measuring the Ingredients for Success (2018).
40.
G. Van Rossum and F. L. Drake
,
Python 3 Reference Manual (CreateSpace, Scotts Valley, CA
,
2009
).
41.
Kerekes
,
R. J.
,
R. M.
Soszynski
, and
P. A. T.
Doo
, “The flocculation of pulp fibres,” in
Papermaking Raw Materials, Trans. of the VIIIth Fund. Res. Symp. Oxford, 1985,
edited by V. Punton (FRC, Manchester
,
2018
), pp. 265–310.
42.
Robertson
,
G.
,
J.
Olson
,
P.
Allen
,
B.
Chan
, and
R.
Seth
, “
Measurement of fiber length, coarseness, and shape with the fiber quality analyzer
,”
Tappi J.
82
,
93
98
(
1999
).
43.
Kerekes
,
R. J.
, and
C. J.
Schell
, “
Characterization of fibre flocculation regimes by a crowding factor
,”
J. Pulp Paper Sci.
18
,
32
38
(
1992
).
44.
Guo
,
B.
, and
G.
Liu
, “Mud hydraulics fundamentals,” in Applied Drilling Circulation Systems, edited by B. Guo and G. Liu (Gulf Professional Publishing, Boston, 2011), Chap. 2, pp. 19–59.
45.
Chilton
,
R. A.
, and
R.
Stainsby
, “
Pressure loss equations for laminar and turbulent non-newtonian pipe flow
,”
J. Hydraulic Eng.
124
,
522
529
(
1998
).
46.
Yu
,
J.
,
B. A.
Appleby
,
M. A.
Mooney
, and
J. R.
Samaniuk
, “
Characterizing the non-newtonian viscosity of high-solids drilling fluid dispersions by flow loop
,”
Phys. Fluids
34
,
053313
(
2022
).
47.
Metzner
,
A. B.
, and
J. C.
Reed
, “
Flow of non-newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions
,”
AIChE J.
1
,
434
440
(
1955
).
48.
Dodge
,
D. W.
, and
A. B.
Metzner
, “
Turbulent flow of non-newtonian systems
,”
AIChE J.
5
,
189
204
(
1959
).
49.
Deignan
,
A.
,
Ł.
Figiel
, and
M. A.
McCarthy
, “
Insights into complex rheological behaviour of carbon fibre/peek from a novel numerical methodology incorporating fibre friction and melt viscosity
,”
Composite Structures
189
,
614
626
(
2018
).
50.
Derakhshandeh
,
B.
,
D.
Vlassopoulos
, and
S. G.
Hatzikiriakos
, “
Thixotropy, yielding and ultrasonic doppler velocimetry in pulp fibre suspensions
,”
Rheol. Acta
51
,
201
214
(
2012
).
51.
Viamajala
,
S.
,
J. D.
McMillan
,
D. J.
Schell
, and
R. T.
Elander
, “
Rheology of corn stover slurries at high solids concentrations—Effects of saccharification and particle size
,”
Bioresour. Technol.
100
,
925
934
(
2009
).
52.
Dalpke
,
B.
, and
R. J.
Kerekes
, “
The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions
,”
J. Pulp Paper Sci.
31
,
39
43
(
2005
).
53.
Djalili-Moghaddam
,
M.
, and
S.
Toll
, “
Fibre suspension rheology: Effect of concentration, aspect ratio and fibre size
,”
Rheol. Acta
45
,
315
320
(
2006
).
You do not currently have access to this content.