Yielding of amorphous glasses and gels is a mechanically driven transformation of a material from the solid to liquid state on the experimental timescale. It is a ubiquitous fundamental problem of nonequilibrium physics of high importance in material science, biology, and engineering applications such as processing, ink printing, and manufacturing. However, the underlying microscopic mechanisms and degree of universality of the yielding problem remain theoretically poorly understood. We address this problem for dense Brownian suspensions of nanoparticles or colloids that interact via repulsions that induce steric caging and tunable short-range attractions that drive physical bond formation. In the absence of deformation, these competing forces can result in fluids, repulsive glasses, attractive glasses, and dense gels of widely varying elastic rigidity and viscosity. Building on a quiescent microscopic theoretical approach that explicitly treats attractive bonding and thermally induced activated hopping, we formulate a self-consistent theory for the coupled evolution of the transient and steady state mechanical response and structure as a function of stress, strain, and deformation rate over a wide range of high packing fractions and attraction strengths and ranges. Depending on the latter variables, under step rate shear the theory predicts three qualitatively different transient responses: plasticlike (of two distinct types), static yielding via a single elastic-viscous stress overshoot, and double or two-step yielding due to an intricate competition between deformation-induced bond breaking and decaging. A predictive understanding of multiple puzzling experimental observations is achieved, and the approach can be extended to other nonlinear rheological protocols and soft matter systems.

1.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
2.
Joshi
,
Y. M.
, and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
,
521
549
(
2018
).
3.
Berthier
,
L.
,
G.
Biroli
,
M. L.
Manning
, and
F.
Zamponi
, “Yielding and plasticity in amorphous solids,” arXiv:2401.09385 (2024).
4.
Theory and Applications of Colloidal Suspension Rheology, edited by N. J. Wagner and J. Mewis, Cambridge Series in Chemical Engineering (
Cambridge University
,
Cambridge
, 2021).
5.
Ahuja
,
A.
,
A.
Potanin
, and
Y. M.
Joshi
, “
Two step yielding in soft materials
,”
Adv. Coll. Interface Sci.
282
,
102179
(
2020
).
6.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion- and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
7.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
,
2456
2470
(
2011
).
8.
Moghimi
,
E.
, and
G.
Petekidis
, “
Mechanisms of two-step yielding in attractive colloidal glasses
,”
J. Rheol.
64
,
1209
1225
(
2020
).
9.
Sciortino
,
F.
, and
P.
Tartaglia
, “
Glassy colloidal systems
,”
Adv. Phys.
54
,
471
524
(
2005
).
10.
Amann
,
C. P.
, and
M.
Fuchs
, “
Transient stress evolution in repulsion and attraction dominated glasses
,”
J. Rheol.
58
,
1191
1217
(
2014
).
11.
Larson
,
R. G.
,
The structure and rheology of complex fluids
,
Topics in Chemical Engineering
(
Oxford University
,
New York
,
1998
).
12.
Koumakis
,
N.
,
M.
Laurati
,
A. R.
Jacob
,
K. J.
Mutch
,
A.
Abdellali
,
A. B.
Schofield
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure
,”
J. Rheol.
60
,
603
623
(
2016
).
13.
Farain
,
K.
, and
D.
Bonn
, “
Quantitative understanding of the onset of dense granular flows
,”
Phys. Rev. Lett.
130
,
108201
(
2023
).
14.
Fuchs
,
M.
, and
M. E.
Cates
, “
Theory of nonlinear rheology and yielding of dense colloidal suspensions
,”
Phys. Rev. Lett.
89
,
248304
(
2002
).
15.
Fuchs
,
M.
, and
M. E.
Cates
, “
Schematic models for dynamic yielding of sheared colloidal glasses
,”
Faraday Discuss.
123
,
267
286
(
2003
).
16.
Fuchs
,
M.
, and
M. E.
Cates
, “
Integration through transients for Brownian particles under steady shear
,”
J. Phys.: Condens. Matter
17
,
S1681
S1696
(
2005
).
17.
Altieri
,
A.
,
P.
Urbani
, and
F.
Zamponi
, “
Microscopic theory of two-step yielding in attractive colloids
,”
Phys. Rev. Lett.
121
,
185503
(
2018
).
18.
Sentjabrskaja
,
T.
,
E.
Babaliari
,
J.
Hendricks
,
M.
Laurati
,
G.
Petekidis
, and
S. U.
Egelhaaf
, “
Yielding of binary colloidal glasses
,”
Soft Matter
9
,
4524
4533
(
2013
).
19.
Fernández-Toledano
,
J. C.
,
J.
Rodríguez-López
,
K.
Shahrivar
,
R.
Hidalgo-Álvarez
,
L.
Elvira
,
F.
Montero de Espinosa
, and
J.
de Vicente
, “
Two-step yielding in magnetorheology
,”
J. Rheol.
58
,
1507
1534
(
2014
).
20.
Moghimi
,
E.
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Colloidal gels tuned by oscillatory shear
,”
Soft Matter
13
,
2371
2383
(
2017
).
21.
Ahuja
,
A.
,
I.
Pappas
, and
A.
Potanin
, “
Relation between structure and stability of toothpaste with two-step yielding
,”
Rheol. Acta
59
,
133
145
(
2020
).
22.
Shao
,
Z.
,
A. S.
Negi
, and
C. O.
Osuji
, “
Role of interparticle attraction in the yielding response of microgel suspensions
,”
Soft Matter
9
,
5492
5500
(
2013
).
23.
Shukla
,
A.
,
S.
Arnipally
,
M.
Dagaonkar
, and
Y. M.
Joshi
, “
Two-step yielding in surfactant suspension pastes
,”
Rheol. Acta
54
,
353
364
(
2015
).
24.
Datta
,
S. S.
,
D. D.
Gerrard
,
T. S.
Rhodes
,
T. G.
Mason
, and
D. A.
Weitz
, “
Rheology of attractive emulsions
,”
Phys. Rev. E
84
,
041404
(
2011
).
25.
Ahuja
,
A.
, and
C.
Gamonpilas
, “
Dual yielding in capillary suspensions
,”
Rheol. Acta
56
,
801
810
(
2017
).
26.
Bergenholtz
,
J.
, and
M.
Fuchs
, “
Nonergodicity transitions in colloidal suspensions with attractive interactions
,”
Phys. Rev. E
59
,
5706
5715
(
1999
).
27.
Dawson
,
K.
,
G.
Foffi
,
M.
Fuchs
,
W.
Götze
,
F.
Sciortino
,
M.
Sperl
,
P.
Tartaglia
,
T.
Voigtmann
, and
E.
Zaccarelli
, “
Higher-order glass-transition singularities in colloidal systems with attractive interactions
,”
Phys. Rev. E
63
,
011401
(
2000
).
28.
Zaccarelli
,
E.
,
G.
Foffi
,
K. A.
Dawson
,
S. V.
Buldyrev
,
F.
Sciortino
, and
P.
Tartaglia
, “
Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study
,”
Phys. Rev. E
66
,
041402
(
2002
).
29.
Pham
,
K. N.
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaiid
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
,
104
106
(
2002
).
30.
Götze
,
W.
, and
M.
Sperl
, “
Higher-order glass-transition singularities in systems with short-ranged attractive potentials
,”
J. Phys.: Condens. Matter
15
,
S869
S879
(
2003
).
31.
Kaufman
,
L. J.
, and
D. A.
Weitz
, “
Direct imaging of repulsive and attractive colloidal glasses
,”
J. Chem. Phys.
125
,
074716
(
2006
).
32.
Zaccarelli
,
E.
, and
W. C. K.
Poon
, “
Colloidal glasses and gels: The interplay of bonding and caging
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
15203
15208
(
2009
).
33.
Willenbacher
,
N.
,
J. S.
Vesaratchanon
,
O.
Thorwarth
, and
E.
Bartsch
, “
An alternative route to highly concentrated, freely flowing colloidal dispersions
,”
Soft Matter
7
,
5777
5788
(
2011
).
34.
Royall
,
C. P.
,
S. R.
Williams
, and
H.
Tanaka
, “
Vitrification and gelation in sticky spheres
,”
J. Chem. Phys.
148
,
044501
(
2018
).
35.
Fullerton
,
C. J.
, and
L.
Berthier
, “
Glassy behavior of sticky spheres: What lies beyond experimental timescales?
Phys. Rev. Lett.
125
,
258004
(
2020
).
36.
Luo
,
C.
, and
L. M. C.
Janssen
, “
Glassy dynamics of sticky hard spheres beyond the mode-coupling regime
,”
Soft Matter
17
,
7645
7661
(
2021
).
37.
Atmuri
,
A. K.
,
G. A.
Peklaris
,
S.
Kishore
, and
S. R.
Bhatia
, “
A re-entrant glass transition in colloidal disks with adsorbing polymer
,”
Soft Matter
8
,
8965
8971
(
2012
).
38.
Zaccarelli
,
E.
,
P. J.
Lu
,
F.
Ciulla
,
D. A.
Weitz
, and
F.
Sciortino
, “
Gelation as arrested phase separation in short-ranged attractive colloid–polymer mixtures
,”
J. Phys.: Condens. Matter
20
,
494242
(
2008
).
39.
Chen
,
K.
, and
K. S.
Schweizer
, “
Theory of yielding, strain softening, and steady plastic flow in polymer glasses under constant strain rate deformation
,”
Macromolecules
44
,
3988
4000
(
2011
).
40.
Roth
,
C. B.
,
Polymer Glasses
(
CRC
,
Boca Raton
,
2016
).
41.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012
).
42.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
Microscopic activated dynamics theory of the shear rheology and stress overshoot in ultradense glass-forming fluids and colloidal suspensions
,”
J. Rheol.
67
,
559
578
(
2023
).
43.
Laurati
,
M.
,
K. J.
Mutch
,
N.
Koumakis
,
J.
Zausch
,
C. P.
Amann
,
A. B.
Schofield
,
G.
Petekidis
,
J. F.
Brady
,
J.
Horbach
,
M.
Fuchs
, and
S. U.
Egelhaaf
, “
Transient dynamics in dense colloidal suspensions under shear: Shear rate dependence
,”
J. Phys.: Condens. Matter
24
,
464104
(
2012
).
44.
Amann
,
C. P.
,
D.
Denisov
,
M. T.
Dang
,
B.
Struth
,
P.
Schall
, and
M.
Fuchs
, “
Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory
,”
J. Chem. Phys.
143
,
034505
(
2015
).
45.
Marenne
,
S.
,
J. F.
Morris
,
D. R.
Foss
, and
J. F.
Brady
, “
Unsteady shear flows of colloidal hard-sphere suspensions by dynamic simulation
,”
J. Rheol.
61
,
477
501
(
2017
).
46.
Besseling
,
R.
,
E. R.
Weeks
,
A. B.
Schofield
, and
W. C. K.
Poon
, “
Three-dimensional imaging of colloidal glasses under steady shear
,”
Phys. Rev. Lett.
99
,
028301
(
2007
).
47.
Denisov
,
D.
,
M. T.
Dang
,
B.
Struth
,
G.
Wegdam
, and
P.
Schall
, “
Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology
,”
Sci. Rep.
3
,
1631
(
2013
).
48.
Edera
,
P.
,
M.
Brizioli
,
M.
Madani
,
E.
Ngouamba
,
P.
Coussot
,
V.
Trappe
,
G.
Petekidis
,
F.
Giavazzi
, and
R.
Cerbino
, “Yielding under the microscope: A multi-scale perspective on brittle and ductile behaviors in oscillatory shear,” arXiv:2402.00221 (2024).
49.
Aime
,
S.
,
D.
Truzzolillo
,
D. J.
Pine
,
L.
Ramos
, and
L.
Cipelletti
, “
A unified state diagram for the yielding transition of soft colloids
,”
Nat. Phys.
19
,
1673
1679
(
2023
).
50.
Cipelletti
,
L.
,
K.
Martens
, and
L.
Ramos
, “
Microscopic precursors of failure in soft matter
,”
Soft Matter
16
,
82
93
(
2020
).
51.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation
,”
J. Chem. Phys.
153
,
194502
(
2020
).
52.
Barlow
,
H. J.
,
J. O.
Cochran
, and
S. M.
Fielding
, “
Ductile and brittle yielding in thermal and athermal amorphous materials
,”
Phys. Rev. Lett.
125
,
168003
(
2020
).
53.
Pollard
,
J.
, and
S. M.
Fielding
, “
Yielding, shear banding, and brittle failure of amorphous materials
,”
Phys. Rev. Res.
4
,
043037
(
2022
).
54.
Dell
,
Z. E.
, and
K. S.
Schweizer
, “
Microscopic theory for the role of attractive forces in the dynamics of supercooled liquids
,”
Phys. Rev. Lett.
115
,
205702
(
2015
).
55.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
Microscopic theory of the influence of strong attractive forces on the activated dynamics of dense glass and gel forming fluids
,”
J. Chem. Phys.
151
,
244502
(
2019
).
56.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
Microscopic theory of onset of decaging and bond-breaking activated dynamics in ultradense fluids with strong short-range attractions
,”
Phys. Rev. E
101
,
060601
(
2020
).
57.
Mutneja
,
A.
, and
K. S.
Schweizer
, “
Microscopic theory of the elastic shear modulus and length-scale-dependent dynamic re-entrancy phenomena in very dense sticky particle fluids
,”
Soft Matter
20
,
7284
7299
(
2024
).
58.
Schweizer
,
K. S.
, “
Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions
,”
J. Chem. Phys.
123
,
244501
(
2005
).
59.
Mirigian
,
S.
, and
K. S.
Schweizer
, “
Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids
,”
J. Chem. Phys.
140
,
194506
(
2014
).
60.
Zhou
,
Y.
,
B.
Mei
, and
K. S.
Schweizer
, “
Integral equation theory of thermodynamics, pair structure, and growing static length scale in metastable hard sphere and Weeks-Chandler-Andersen fluids
,”
Phys. Rev. E
101
,
042121
(
2020
).
61.
Verlet
,
L.
, “
Integral equations for classical fluids: I. The hard sphere case
,”
Mol. Phys.
41
,
183
190
(
1980
).
62.
Nägele
,
G.
, and
J.
Bergenholtz
, “
Linear viscoelasticity of colloidal mixtures
,”
J. Chem. Phys.
108
,
9893
9904
(
1998
).
63.
Dyre
,
J. C.
,
T.
Christensen
, and
N. B.
Olsen
,
Elastic models for the non-Arrhenius viscosity of glass-forming liquids
,”
J. Non-Crystall. Solids
352
,
4635
4642
(
2006
).
64.
Kramers
,
H.
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
,
284
304
(
1940
).
65.
Falk
,
M. L.
, and
J. S.
Langer
, “
Dynamics of viscoplastic deformation in amorphous solids
,”
Phys. Rev. E
57
,
7192
7205
(
1998
).
66.
Ghosh
,
A.
, “
Importance of many particle correlations to the collective Debye–Waller factor in a single-particle activated dynamic theory of the glass transition
,”
J. Phys. Chem. B
127
,
5162
5168
(
2023
).
67.
Miyazaki
,
K.
,
D. R.
Reichman
, and
R.
Yamamoto
, “
Supercooled liquids under shear: Theory and simulation
,”
Phys. Rev. E
70
,
011501
(
2004
).
68.
Yamamoto
,
R.
, and
A.
Onuki
, “
Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion
,”
Phys. Rev. E
58
,
3515
3529
(
1998
).
69.
Kobelev
,
V.
, and
K. S.
Schweizer
, “
Strain softening, yielding, and shear thinning in glassy colloidal suspensions
,”
Phys. Rev. E
71
,
021401
(
2005
).
70.
Sussman
,
D. M.
, and
K. S.
Schweizer
, “
Microscopic theory of quiescent and deformed topologically entangled rod solutions: General formulation and relaxation after nonlinear step strain
,”
Macromolecules
45
,
3270
3284
(
2012
).
71.
Fuchs
,
M.
, “Nonlinear rheological properties of dense colloidal dispersions close to a glass transition under steady shear,” in High Solid Dispersions, edited by M. Cloitre (Springer, Berlin, 2010), pp. 55–115.
72.
Amann
,
C. P.
,
M.
Siebenbürger
,
M.
Krüger
,
F.
Weysser
,
M.
Ballauff
, and
M.
Fuchs
, “
Overshoots in stress-strain curves: Colloid experiments and schematic mode coupling theory
,”
J. Rheol.
57
,
149
175
(
2013
).
73.
Bennin
,
T.
,
J.
Ricci
, and
M. D.
Ediger
, “
Enhanced segmental dynamics of poly(lactic acid) glasses during constant strain rate deformation
,”
Macromolecules
52
,
6428
6437
(
2019
).
74.
Asakura
,
S.
, and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
75.
Miyazaki
,
K.
,
K. S.
Schweizer
,
D.
Thirumalai
,
R.
Tuinier
, and
E.
Zaccarelli
, “
The Asakura–Oosawa theory: Entropic forces in physics, biology, and soft matter
,”
J. Chem. Phys.
156
,
080401
(
2022
).
76.
Chen
,
Y.-L.
, and
K. S.
Schweizer
, “
Microscopic theory of gelation and elasticity in polymer–particle suspensions
,”
J. Chem. Phys.
120
,
7212
7222
(
2004
).
77.
Truby
,
R. L.
, and
J. A.
Lewis
, “
Printing soft matter in three dimensions
,”
Nature
540
,
371
378
(
2016
).
78.
Chen
,
K.
, and
K. S.
Schweizer
, “
Theory of aging, rejuvenation, and the nonequilibrium steady state in deformed polymer glasses
,”
Phys. Rev. E
82
,
041804
(
2010
).
You do not currently have access to this content.