The topic of thixotropy has historically received much attention due to its importance in a wide range of complex fluids and their applications. However, a thorough understanding of the phenomenon and how to model it remain outstanding challenges. In this work, we examine two materials that exhibit phenomenology often referred to as thixotropic through the lens of stress-controlled recovery rheology. When subjected to an oscillatory shear stress, the materials, an aqueous surfactant system that structurally forms multilamellar vesicles as well as a frequently studied fumed silica suspension, show a transient increase in the resulting strain amplitude. We use both creep and oscillatory tests in conjunction with recovery rheology to measure the elastic and viscous contributions to flow and deformation and find that the elastic contributions remain constant, even at larger amplitudes where nonlinear responses are induced. We conclude that the observed behavior is, therefore, strictly a viscous phenomenon, in contrast with common modeling efforts that describe both the viscous and elastic behaviors as being transient. We additionally examine how typical use of the dynamic moduli can give a misleading description of the material’s behavior, whereas examination of the energetic contributions provides a description consistent with the recovery measurements.

1.
Bingham
,
E. C.
,
The History of the Society of Rheology From 1924–1944
(SOR,
1944
).
2.
Schalek
,
E.
, and
A.
Szegvari
, “
Die langsame Koagulation konzentrierter Eisenoxydsole zu reversiblen Gallerten
,”
Kolloid-Z.
33
,
326
334
(
1923
).
3.
Péterfi
,
T.
, “
Die Abhebung der Befruchtungsmembran bei Seeigeleiern
,”
Wilhelm Roux' Arch. Entwicklungsmech. Org.
112
,
660
695
(
1927
).
4.
Freundlich
,
H.
, “
Ueber thixotropie
,”
Kolloid-Z.
46
,
289
299
(
1928
).
5.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Nonnewton. Fluid Mech.
6
,
1
20
(
1979
).
6.
Bauer
,
W. H.
, and
E. A.
Collins
, “
Thixotropy and dilatancy
,” in
Rheology
(
Academic
,
1967
), pp. 423–459.
7.
Barnes
,
H. A.
, “
Thixotropy—A review
,”
J. Nonnewton. Fluid Mech.
70
,
1
33
(
1997
).
8.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
9.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
10.
Willenbacher
,
N.
, “
Unusual thixotropic properties of aqueous dispersions of Laponite RD
,”
J. Colloid Interface Sci.
182
,
501
510
(
1996
).
11.
Singh
,
P. K.
,
C. J.
Lee
,
K. A.
Patankar
, and
S. A.
Rogers
, “
Revisiting the basis of transient rheological material functions: Insights from recoverable strain measurements
,”
J. Rheol.
65
,
129
144
(
2021
).
12.
Shim
,
Y. H.
,
J. J.
Griebler
, and
S. A.
Rogers
, “
A reexamination of the Cox–Merz rule through the lens of recovery rheology
,”
J. Rheol.
68
,
381
396
(
2024
).
13.
Scott Blair
,
G. W.
, “
An extension of Reiner’s ‘Deborah number’ concept to a Wide field of rheological investigations
,”
Rheol. Acta
12
,
319
320
(
1973
).
14.
Horner
,
J. S.
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof
,”
J. Rheol.
63
,
799
813
(
2019
).
15.
Apostolidis
,
A. J.
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
,
275
298
(
2015
).
16.
Armstrong
,
M. J.
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension
,”
Rheol. Acta
56
,
811
824
(
2017
).
17.
Beris
,
A. N.
,
E.
Stiakakis
, and
D.
Vlassopoulos
, “
A thermodynamically consistent model for the thixotropic behavior of concentrated star polymer suspensions
,”
J. Non-Newtonian Fluid Mech.
152
,
76
85
(
2008
).
18.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Nonnewton. Fluid Mech.
187–188
,
8
15
(
2012
).
19.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Mapping thixo-elasto-visco-plastic behavior
,”
Rheol. Acta
56
,
195
210
(
2017
).
20.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
21.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
22.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Viscoelasticity and rheological hysteresis
,”
J. Rheol.
67
,
139
155
(
2023
).
23.
Dinkgreve
,
M.
,
M. M.
Denn
, and
D.
Bonn
, “
‘Everything flows?’: Elastic effects on startup flows of yield-stress fluids
,”
Rheol. Acta
56
,
189
194
(
2017
).
24.
Coussot
,
P.
, and
S. A.
Rogers
, “
Oldroyd’s model and the foundation of modern rheology of yield stress fluids
,”
J. Nonnewton. Fluid Mech.
295
,
104604
(
2021
).
25.
Bingham
,
E. C.
,
Fluidity and Plasticity
(
McGraw-Hill
, New York,
1922
), Vol.
2
.
26.
Casson
,
N.
, “
Flow equation for pigment-oil suspensions of the printing ink-type
,” in
Rheology of Disperse Systems
(
Pergamon
, Oxford,
1959
), pp.
84
104
.
27.
Herschel
,
W. H.
, and
R.
Bulkley
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Kolloid-Z.
39
,
291
300
(
1926
).
28.
Saramito
,
P.
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Nonnewton. Fluid Mech.
145
,
1
14
(
2007
).
29.
Dinkgreve
,
M.
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring ‘the’ yield stress
,”
J. Nonnewton. Fluid Mech.
238
,
233
241
(
2016
).
30.
Barnes
,
H. A.
, and
K.
Walters
, “
The yield stress myth?
,”
Rheol. Acta
24
,
323
326
(
1985
).
31.
Barnes
,
H. A.
, “
The ‘yield stress myth?’ paper—21 years on
,”
Appl. Rheol.
17
,
43110-1
43110-5
(
2007
).
32.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
1
44
(
2017
).
33.
Hartnett
,
J. P.
, and
R. Y. Z.
Hu
, “
Technical note: The yield stress—An engineering reality
,”
J. Rheol.
33
,
671
679
(
1989
).
34.
Barnes
,
H. A.
, “
The yield stress—A review or ‘παντα ρει’—everything flows?
,”
J. Nonnewton. Fluid Mech.
81
,
133
178
(
1999
).
35.
Donley
,
G. J.
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
21945
21952
(
2020
).
36.
Kamani
,
K.
,
G. J.
Donley
, and
S. A.
Rogers
, “
Unification of the rheological physics of yield stress fluids
,”
Phys. Rev. Lett.
126
,
218002
(
2021
).
37.
Choi
,
J.
,
M.
Armstrong
, and
S. A.
Rogers
, “
The role of elasticity in thixotropy: Transient elastic stress during stepwise reduction in shear rate
,”
Phys. Fluids
33
,
033112
(
2021
).
38.
Hough
,
L. A.
,
D.
Bendejacq
, and
T. J.
Fütterer
, “
Characterization of multilamellar vesicles for cleansing applications
,”
Cosmet. Toilet.
123
,
59
66
(
2008
).
39.
Dullaert
,
K.
, and
J.
Mewis
, “
A model system for thixotropy studies
,”
Rheol. Acta
45
,
23
32
(
2005
).
40.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Nonnewton. Fluid Mech.
139
,
21
30
(
2006
).
41.
Dullaert
,
K.
, and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
,
1213
1230
(
2005
).
42.
Armstrong
,
M. J.
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
,
433
450
(
2016
).
43.
Colombo
,
G.
,
S.
Kim
,
T.
Schweizer
,
B.
Schroyen
,
C.
Clasen
,
J.
Mewis
, and
J.
Vermant
, “
Superposition rheology and anisotropy in rheological properties of sheared colloidal gels
,”
J. Rheol.
61
,
1035
1048
(
2017
).
44.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Time-dependent shear rate inhomogeneities and shear bands in a thixotropic yield-stress fluid under transient shear
,”
Soft Matter
15
,
7956
7967
(
2019
).
45.
Choi
,
J.
, and
S. A.
Rogers
, “
Optimal conditions for pre-shearing thixotropic or aging soft materials
,”
Rheol. Acta
59
,
921
934
(
2020
).
46.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows
,”
J. Rheol.
60
,
1301
1315
(
2016
).
47.
Schofield
,
R. K.
, and
G. W.
Scott Blair
, “
The relationship between viscosity, elasticity and plastic strength of soft materials as illustrated by some mechanical properties of flour doughs, I
,”
Proc. R. Soc. London, Ser. A
138
,
707
718
(
1932
).
48.
Wesissenberg
,
K.
, “
A continuum theory of rheological phenomena
,”
Nature
159
,
310
311
(
1947
).
49.
Reiner
,
M.
, “
Rheology
,” in
Elasticity and Plasticity/Elastizität und Plastizität
(
Springer
,
Berlin
,
1958
), pp.
434
550
.
50.
Di Dio
,
B. F.
,
F.
Khabaz
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Transient dynamics of soft particle glasses in startup shear flow. Part II: Memory and aging
,”
J. Rheol.
66
,
717
730
(
2022
).
51.
Green
,
H.
, and
R.
Weltmann
, “
Analysis of thixotropy of pigment-vehicle suspensions—Basic principles of the hysteresis loop
,”
Ind. Eng. Chem. Anal. Ed.
15
,
201
206
(
1943
).
52.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
53.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Avalanche behavior in yield stress fluids
,”
Phys. Rev. Lett.
88
,
175501
(
2002
).
54.
Landrum
,
B. J.
,
W. B.
Russel
, and
R. N.
Zia
, “
Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes
,”
J. Rheol.
60
,
783
807
(
2016
).
55.
Sentjabrskaja
,
T.
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
,
11884
(
2015
).
56.
Rogers
,
S. A.
, “
Understanding the yielding behavior of graphene oxide colloids via experimental strain decomposition
,”
Phys. Fluids
35
,
63117
(
2023
).
57.
Moldenaers
,
P.
, and
J.
Mewis
, “
Transient behavior of liquid crystalline solutions of poly(benzylglutamate)
,”
J. Rheol.
30
,
567
584
(
1986
).
58.
de Souza Mendes
,
P. R.
, “
Modeling the thixotropic behavior of structured fluids
,”
J. Nonnewton. Fluid Mech.
164
,
66
75
(
2009
).
59.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
,”
Rheol. Acta
52
,
673
694
(
2013
).
60.
de Souza Mendes
,
P. R.
,
B.
Abedi
, and
R. L.
Thompson
, “
Constructing a thixotropy model from rheological experiments
,”
J. Nonnewton. Fluid Mech.
261
,
1
8
(
2018
).
61.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
62.
Lee
,
J. C.-W.
,
Y.-T.
Hong
,
K. M.
Weigandt
,
E. G.
Kelley
,
H.
Kong
, and
S. A.
Rogers
, “
Strain shifts under stress-controlled oscillatory shearing in theoretical, experimental, and structural perspectives: Application to probing zero-shear viscosity
,”
J. Rheol.
63
,
863
881
(
2019
).
63.
Hassager
,
O.
, “
Stress-controlled oscillatory flow initiated at time zero: A linear viscoelastic analysis
,”
J. Rheol.
64
,
545
550
(
2020
).
64.
Tschoegl
,
N. W.
,
The Phenomenological Theory of Linear Viscoelastic Behavior
(
Springer
,
Berlin
,
1989
).

Supplementary Material

You do not currently have access to this content.