This article investigates the effect of rim charges on the macroscopic flow behavior of platelike particle suspensions in Couette flow. Fluid-solid coupling is achieved using the lattice spring direct-forcing immersed boundary lattice Boltzmann method. Platelike particles are equipped with rim charges to simulate the inhomogeneous charge distribution commonly observed in clay particles. By examining suspensions with varying numbers of platelike particles, it has been found that rim charges induce particle clustering in shear flow. At low shear rates, inter-particle electrostatic forces drive the formation of large clusters, resulting in higher suspension viscosity. As the shear rate increases, hydrodynamic forces break large clusters into smaller ones, leading to a decrease in shear viscosity. Orientation correlation function calculations indicate that rim charges on platelike particles promote the formation of house-of-cards (HoC) microstructures in suspensions, and these microstructures transform from HoC-dominant to overlapping coins-dominant as shear flow grows stronger. Additionally, investigations of suspensions with larger aspect ratios reveal that the average cluster volume is the primary factor influencing the viscosity of rim-charged platelike particle suspensions, especially under conditions where electrostatic forces dominate. Our results provide insights into the relationship between particle clusters and macroscopic flow properties in clay systems.

1.
Livescu
,
S.
, “
Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines—A review
,”
J. Pet. Sci. Eng.
98–99
,
174
184
(
2012
).
2.
Stankovich
,
S.
,
D. A.
Dikin
,
G. H. B.
Dommett
,
K. M.
Kohlhaas
,
E. J.
Zimney
,
E. A.
Stach
,
R. D.
Piner
,
S. T.
Nguyen
, and
R. S.
Ruoff
, “
Graphene-based composite materials
,”
Nature
442
,
282
286
(
2006
).
3.
Shen
,
A.
,
X.
Peng
,
C. P.
Bailey
,
S.
Dardona
, and
A. W.
Ma
, “
3D printing of polymer-bonded magnets from highly concentrated, plate-like particle suspensions
,”
Mater. Des.
183
,
108133
(
2019
).
4.
Amorós
,
J.
,
E.
Blasco
, and
V.
Beltrán
, “
Shear-thinning behaviour of dense, stabilised suspensions of plate-like particles. Proposed structural model
,”
Appl. Clay Sci.
114
,
297
302
(
2015
).
5.
Niu
,
R.
,
J.
Gong
,
D.
Xu
,
T.
Tang
, and
Z.-Y.
Sun
, “
Relationship between structures and rheological properties of plate-like particle suspensions
,”
Colloids Surf., A
470
,
22
30
(
2015
).
6.
Vasu
,
K.
,
R.
Krishnaswamy
,
S.
Sampath
, and
A.
Sood
, “
Yield stress, thixotropy and shear banding in a dilute aqueous suspension of few layer graphene oxide platelets
,”
Soft Matter
9
,
5874
5882
(
2013
).
7.
Shoaib
,
M.
, and
E. R.
Bobicki
, “
Rheological implications of pH induced particle-particle association in aqueous suspension of an anisotropic charged clay
,”
Soft Matter
17
,
7822
7834
(
2021
).
8.
Okamoto
,
M.
,
P. H.
Nam
,
P.
Maiti
,
T.
Kotaka
,
N.
Hasegawa
, and
A.
Usuki
, “
A house of cards structure in polypropylene/clay nanocomposites under elongational flow
,”
Nano Lett.
1
,
295
298
(
2001
).
9.
Meng
,
Q.
, and
J. J. L.
Higdon
, “
Large scale dynamic simulation of plate-like particle suspensions. Part I: Non-Brownian simulation
,”
J. Rheol.
52
,
1
36
(
2008
).
10.
Stephanou
,
P. S.
, “
The rheology of drilling fluids from a non-equilibrium thermodynamics perspective
,”
J. Pet. Sci. Eng.
165
,
1010
1020
(
2018
).
11.
Jeffery
,
G. B.
, and
L. N. G.
Filon
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. Lond. Ser. A
102
,
161
179
(
1922
).
12.
Bretherton
,
F. P.
, “
The motion of rigid particles in a shear flow at low Reynolds number
,”
J. Fluid Mech.
14
,
284
304
(
1962
).
13.
Singh
,
V.
,
D. L.
Koch
, and
A. D.
Stroock
, “
Ideal rate of collision of cylinders in simple shear flow
,”
Langmuir
27
,
11813
11823
(
2011
).
14.
Kawabata
,
H.
,
D.
Nishiura
,
H.
Sakaguchi
, and
Y.
Tatsumi
, “
Self-organized domain microstructures in a plate-like particle suspension subjected to rapid simple shear
,”
Rheol. Acta
52
,
1
21
(
2013
).
15.
Dijkstra
,
M.
,
J. P.
Hansen
, and
P.
Madden
, “
Gelation of a clay colloid suspension
,”
Phys. Rev. Lett.
75
,
2236
2239
(
1995
).
16.
Luckham
,
P. F.
, and
S.
Rossi
, “
The colloidal and rheological properties of bentonite suspensions
,”
Adv. Colloid Interface Sci.
82
,
43
92
(
1999
).
17.
Shalkevich
,
A.
,
A.
Stradner
,
S. K.
Bhat
,
F.
Muller
, and
P.
Schurtenberger
, “
Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions
,”
Langmuir
23
,
3570
3580
(
2007
).
18.
Lagaly
,
G.
, “
Principles of flow of kaolin and bentonite dispersions
,”
Appl. Clay Sci.
4
,
105
123
(
1989
).
19.
Jönsson
,
B.
,
C.
Labbez
, and
B.
Cabane
, “
Interaction of nanometric clay platelets
,”
Langmuir
24
,
11406
11413
(
2008
).
20.
Li
,
M.-C.
,
Q.
Wu
,
K.
Song
,
A. D.
French
,
C.
Mei
, and
T.
Lei
, “
pH-responsive water-based drilling fluids containing bentonite and chitin nanocrystals
,”
ACS Sustainable Chem. Eng.
6
,
3783
3795
(
2018
).
21.
Ruzicka
,
B.
,
E.
Zaccarelli
,
L.
Zulian
,
R.
Angelini
,
M.
Sztucki
,
A.
Moussa‘d
,
T.
Narayanan
, and
F.
Sciortino
, “
Observation of empty liquids and equilibrium gels in a colloidal clay
,”
Nat. Mater.
10
,
56
60
(
2011
).
22.
Pignon
,
F.
,
A.
Magnin
,
J.-M.
Piau
,
B.
Cabane
,
P.
Lindner
, and
O.
Diat
, “
Yield stress thixotropic clay suspension: Investigations of structure by light, neutron, and x-ray scattering
,”
Phys. Rev. E
56
,
3281
3289
(
1997
).
23.
Taylor
,
M. L.
,
G. E.
Morris
,
P. G.
Self
, and
R. S.
Smart
, “
Kinetics of adsorption of high molecular weight anionic polyacrylamide onto kaolinite: The flocculation process
,”
J. Colloid Interface Sci.
250
,
28
36
(
2002
).
24.
Loginov
,
M.
,
O.
Larue
,
N.
Lebovka
, and
E.
Vorobiev
, “
Fluidity of highly concentrated kaolin suspensions: Influence of particle concentration and presence of dispersant
,”
Colloids Surf., A
325
,
64
71
(
2008
).
25.
Ndlovu
,
B.
,
M.
Becker
,
E.
Forbes
,
D.
Deglon
, and
J.-P.
Franzidis
, “
The influence of phyllosilicate mineralogy on the rheology of mineral slurries
,”
Miner. Eng.
24
,
1314
1322
(
2011
).
26.
Bandyopadhyay
,
R.
,
D.
Liang
,
H.
Yardimci
,
D. A.
Sessoms
,
M. A.
Borthwick
,
S. G. J.
Mochrie
,
J. L.
Harden
, and
R. L.
Leheny
, “
Evolution of particle-scale dynamics in an aging clay suspension
,”
Phys. Rev. Lett.
93
,
228302
(
2004
).
27.
Joshi
,
Y. M.
, “
Dynamics of colloidal glasses and gels
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
181
202
(
2014
).
28.
Parmar
,
V. R. S.
, and
R.
Bandyopadhyay
, “
Manipulating crack formation in air-dried clay suspensions with tunable elasticity
,”
Phys. Fluids
36
,
113114
(
2024
).
29.
Angelini
,
R.
,
E.
Zaccarelli
,
F. A.
De Melo Marques
,
M.
Sztucki
,
A.
Fluerasu
,
G.
Ruocco
, and
B.
Ruzicka
, “
Glass–glass transition during aging of a colloidal clay
,”
Nat. Commun.
5
,
004049
(
2014
).
30.
Delhorme
,
M.
,
B.
Jönsson
, and
C.
Labbez
, “
Monte Carlo simulations of a clay inspired model suspension: The role of rim charge
,”
Soft Matter
8
,
9691
9704
(
2012
).
31.
Palak
,
G.
,
V. R. S.
Parmar
, and
R.
Bandyopadhyay
, “
Growth kinetics of interfacial patterns formed by the radial displacement of an aging viscoelastic suspension
,”
JCIS Open
10
,
100084
(
2023
).
32.
Sierou
,
A.
, and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
146
(
2001
).
33.
Labalette
,
V.
,
A.
Praga
,
F.
Girard
,
M.
Meireles
,
Y.
Hallez
, and
J. F.
Morris
, “
Shear-induced glass-to-crystal transition in anisotropic clay-like suspensions
,”
Soft Matter
17
,
3174
3190
(
2021
).
34.
Peskin
,
C. S.
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
252
(
1977
).
35.
Khan
,
M.
,
R. D.
Corder
,
K. A.
Erk
, and
A. M.
Ardekani
, “
Rheology of bi-disperse dense fiber suspensions
,”
Soft Matter
20
,
856
868
(
2024
).
36.
Aidun
,
C. K.
, and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
37.
Johnson
,
D. H.
,
F.
Vahedifard
,
B.
Jelinek
, and
J. F.
Peters
, “
Micromechanical modeling of discontinuous shear thickening in granular media-fluid suspension
,”
J. Rheol.
61
,
265
277
(
2017
).
38.
Liu
,
Y.
,
Y.
Guo
,
B.
Yang
,
D.
Pan
,
Z.
Xia
,
Z.
Yu
, and
L.-P.
Wang
, “
Three-dimensional sedimentation patterns of two interacting disks in a viscous fluid
,”
J. Fluid Mech.
960
,
A25
(
2023
).
39.
Kang
,
S. K.
, and
Y. A.
Hassan
, “
A direct-forcing immersed boundary method for the thermal lattice Boltzmann method
,”
Comput. Fluids
49
,
36
45
(
2011
).
40.
Mountrakis
,
L.
,
E.
Lorenz
,
O.
Malaspinas
,
S.
Alowayyed
,
B.
Chopard
, and
A. G.
Hoekstra
, “
Parallel performance of an IB-LBM suspension simulation framework
,”
J. Comput. Sci.
9
,
45
50
(
2015
).
41.
Chen
,
S.
,
H.
Chen
,
D.
Martnez
, and
W.
Matthaeus
, “
Lattice Boltzmann model for simulation of magnetohydrodynamics
,”
Phys. Rev. Lett.
67
,
3776
3779
(
1991
).
42.
Krüger
,
T.
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
, The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics (Springer, Cham, 2017).
43.
Guo
,
Z.
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
,
046308
(
2002
).
44.
Kang
,
S. K.
, and
Y. A.
Hassan
, “
A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries
,”
Int. J. Numer. Methods Fluids
66
,
1132
1158
(
2011
).
45.
Luo
,
Y.
,
T.-H.
Wu
, and
D.
Qi
, “
Lattice-Boltzmann lattice-spring simulations of flexibility and inertial effects on deformation and cruising reversal of self-propelled flexible swimming bodies
,”
Comput. Fluids
155
,
89
102
(
2017
).
46.
Tang
,
Y.
,
T.-H.
Wu
,
G.-W.
He
, and
D.
Qi
, “
Multi-flexible fiber flows: A direct-forcing immersed boundary lattice-Boltzmann lattice-spring approach
,”
Int. J. Multiphase Flow
99
,
408
422
(
2018
).
47.
Wu
,
T.-H.
,
R.-S.
Guo
,
G.-W.
He
,
Y.-M.
Liu
, and
D.
Qi
, “
Simulation of swimming of a flexible filament using the generalized lattice-spring lattice-Boltzmann method
,”
J. Theor. Biol.
349
,
1
11
(
2014
).
48.
Khan
,
M.
,
R. V.
More
,
A. A.
Banaei
,
L.
Brandt
, and
A. M.
Ardekani
, “
Rheology of concentrated fiber suspensions with a load-dependent friction coefficient
,”
Phys. Rev. Fluids
8
,
044301
(
2023
).
49.
Buxton
,
G. A.
,
R.
Verberg
,
D.
Jasnow
, and
A. C.
Balazs
, “
Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models
,”
Phys. Rev. E
71
,
056707
(
2005
).
50.
Aidun
,
C. K.
, and
Y.
Lu
, “
Lattice Boltzmann simulation of solid particles suspended in fluid
,”
J. Stat. Phys.
81
,
49
61
(
1995
).
51.
Goldsmith
,
H. L.
, and
S. G.
Mason
, “
Particle motions in sheared suspensions XIII. The spin and rotation of disks
,”
J. Fluid Mech.
12
,
88
96
(
1962
).
52.
Singh
,
V.
,
D. L.
Koch
,
G.
Subramanian
, and
A. D.
Stroock
, “
Rotational motion of a thin axisymmetric disk in a low Reynolds number linear flow
,”
Phys. Fluids
26
,
033303
(
2014
).
53.
Kulkarni
,
P. M.
, and
J. F.
Morris
, “
Suspension properties at finite Reynolds number from simulated shear flow
,”
Phys. Fluids
20
,
040602
(
2008
).
54.
Macmeccan
,
R. M.
,
J. R.
Clausen
,
G. P.
Neitzel
, and
C. K.
Aidun
, “
Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method
,”
J. Fluid Mech.
618
,
13
39
(
2009
).
55.
Goudeli
,
E.
,
M. L.
Eggersdorfer
, and
S. E.
Pratsinis
, “
Coagulation-agglomeration of fractal-like particles: Structure and self-preserving size distribution
,”
Langmuir
31
,
1320
1327
(
2015
).
56.
Khabazipur
,
A.
, and
N.
Eaves
, “
On the fractal dimension of carbon black particles in pyrolysis flow reactors
,”
J. Aerosol. Sci.
178
,
106357
(
2024
).
57.
Tudisca
,
V.
,
M. A.
Ricci
,
R.
Angelini
, and
B.
Ruzicka
, “
Isotopic effect on the aging dynamics of a charged colloidal system
,”
RSC Adv.
2
,
11111
11116
(
2012
).
58.
Kamal
,
C.
, and
L.
Botto
, “
The effect of Navier slip on the rheology of a dilute two-dimensional suspension of plate-like particles
,”
J. Fluid Mech.
972
,
A1
(
2023
).
You do not currently have access to this content.