The implementation of a cone-partitioned plate (CPP) is established as a practical way to delay edge fracture effects on the measurement of the nonlinear shear viscosity of polymer melts. A CPP allows us to measure the first and second normal stress differences, N1 and N2, by using at least two different loadings, i.e., two radii of the inner plate (measuring tool) and/or the outer plate (partition). This two-step method works satisfactorily at intermediate shear rates (corresponding to the Rouse–Weissenberg number W i R 1). However, it involves significant errors at high shear rates ( W i R > 1 ) because the shape of the outer edge is involved in the determination of normal stress differences. We present two methods to reliably measure N1 and N2 in entangled polymer melts. The first is based on the use of CPP with a ring collar (CPP-R), which was recently shown to optimally mitigate edge fracture. In this context, we also present the design of a modified partition with the collar embedded in it, CPP-RS, that is easier to align and reduces compliance effects. The data are in excellent agreement with the respective CPP data (with less unambiguous normal stress signal), as well as the reference data from the literature, and are well described by a recent tube-based model. Obtaining stable normal stress signals over long times is essentially a prerequisite for robust N1 and N2 data. Second, we propose a new single-step method based on single loading, by accounting for the onset of edge fracture at the outer partition and its end when it propagates to the inner measuring tool, and the measured signal deviates from the steady state. The very good agreement of the data from different methods, as well as with the tube-model theoretical predictions, suggests that reliable, normal stress difference data of strongly viscoelastic materials can be obtained systematically.

1.
Baek
,
S. G.
, and
J. J.
Magda
, “
Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N1 and N2 measurements
,”
J. Rheol.
47
(
5
),
1249
1260
(
2003
).
2.
Xiong
,
Z.
,
P.
Angerman
,
M.
Ellero
,
B.
Sandnes
, and
R.
Seto
, “
Ridge instability in dense suspensions caused by the second normal stress difference
,”
Phys. Fluids
36
(
2
),
024111
(
2024
).
3.
Macosko
,
C. W.
, Rheology: Principles, Measurements and Applications (Wiley-VCH, New York,
1994
).
4.
Feigl
,
K.
, and
H. C.
Öttinger
, “
The flow of a ldpe melt through an axisymmetrical contraction—A numerical study and comparison to experimental results
,”
J. Rheol.
38
(
4
),
847
874
(
1994
).
5.
Housiadas
,
K. D.
, and
A. N.
Beris
, “
Viscoelastic flow with slip in a hyperbolic channel
,”
J. Rheol.
68
(
3
),
415
428
(
2024
).
6.
Housiadas
,
K. D.
, and
A. N.
Beris
, “
On the elongational viscosity of viscoelastic slip flows in hyperbolic confined geometries
,”
J. Rheol.
68
(
3
),
327
339
(
2024
).
7.
Debbaut
,
B.
,
T.
Avalosse
,
J.
Dooley
, and
K.
Hughes
, “
On the development of secondary motions in straight channels induced by the second normal stress difference: Experiments and simulations
,”
J. Non-Newtonian Fluid Mech.
69
(
2-3
),
255
271
(
1997
).
8.
Chan
,
S. T.
,
F. P. A.
van Berlo
,
H. A.
Faizi
,
A.
Matsumoto
,
S. J.
Haward
,
P. D.
Anderson
, and
A. Q.
Shen
, “
Torsional fracture of viscoelastic liquid bridges
,”
Proc. Natl. Acad. Sci. U.S.A
.
118
,
e2104790118
(
2021
).
9.
Kannan
,
R.
, and
J.
Kornfield
, “
The third-normal stress difference in entangled melts: Quantitative stress-optical measurements in oscillatory shear
,”
Rheol. Acta
31
,
535
544
(
1992
).
10.
Brown
,
E. E.
,
W. R.
Burghardt
,
H.
Kahvand
, and
D. C.
Venerus
, “
Comparison of optical and mechanical measurements of second normal stress difference relaxation following step strain
,”
Rheol. Acta
34
,
221
234
(
1995
).
11.
Beavers
,
G.
, and
D.
Joseph
, “
The rotating rod viscometer
,”
J. Fluid Mech.
69
(
3
),
475
511
(
1975
).
12.
Magda
,
J. J.
,
J.
Lou
,
S. G.
Baek
, and
K. L.
Devries
, “
Second normal stress difference of a boger fluid
,”
Polymer
32
(
11
),
2000
2009
(
1991
).
13.
Alvarez
,
G. A.
,
A. S.
Lodge
, and
H. J.
Cantow
, “
Measurement of the first and second normal stress differences: Correlation of four experiments on a polyisobutylene/decalin solution ‘D1
,’”
Rheol. Acta
24
(
4
),
368
376
(
1985
).
14.
Ohl
,
N.
, and
W.
Gleissle
, “
The second normal stress difference for pure and highly filled viscoelastic fluids
,”
Rheol. Acta
31
,
294
305
(
1992
).
15.
Jackson
,
R.
, and
A.
Kaye
, “
The measurement of the normal stress differences in a liquid undergoing simple shear flow using a cone-and-plate total thrust apparatus only
,”
Br. J. Appl. Phys.
17
(
10
),
1355
1360
(
1966
).
16.
Marsh
,
B. D.
, and
J. R. A.
Pearson
, “
The measurement of normal-stress differences using a cone- and-plate total thrust apparatus
,”
Rheol. Acta
7
(
4
),
326
331
(
1968
).
17.
Rautenbach
,
R.
,
P.
Schümmer
, and
J. F.
Petersen
, “
Zur bestimmung der normalspannungs-funktionen von hochpolymeren mittels der kegel-platte-abstand-anordnung (KPA)
,”
Rheol. Acta
14
(
11
),
968
975
(
1975
).
18.
Ginn
,
R.
, and
A.
Metzner
, “
Measurement of stresses developed in steady laminar shearing flows of viscoelastic media
,”
Trans. Soc. Rheol.
13
(
4
),
429
453
(
1969
).
19.
Alcoutlabi
,
M.
,
S. G.
Baek
,
J. J.
Magda
,
X. F.
Shi
,
S. A.
Hutcheson
, and
G. B.
McKenna
, “
A comparison of three different methods for measuring both normal stress differences of viscoelastic liquids in torsional rheometers
,”
Rheol. Acta
48
(
2
),
191
200
(
2009
).
20.
Magda
,
J. J.
,
S. G.
Baek
,
K. L.
Devries
, and
R. G.
Larson
, “
Unusual pressure profiles and fluctuations during shear flows of liquid-crystal polymers
,”
Polymer
32
(
10
),
1794
1796
(
1991
).
21.
Magda
,
J. J.
,
S. G.
Baek
,
K. L.
Devries
, and
R. G.
Larson
, “
Shear flows of liquid-crystal polymers - measurements of the 2nd normal stress difference and the Doi molecular theory
,”
Macromolecules
24
(
15
),
4460
4468
(
1991
).
22.
Lee
,
C. S.
,
J. J.
Magda
,
K. L.
Devries
, and
J. W.
Mays
, “
Measurements of the 2nd normal stress difference for star polymers with highly entangled branches
,”
Macromolecules
25
(
18
),
4744
4750
(
1992
).
23.
Baek
,
S. G.
,
J. J.
Magda
, and
S.
Cementwala
, “
Normal stress differences in liquid-crystalline hydroxypropylcellulose solutions
,”
J. Rheol.
37
(
5
),
935
945
(
1993
).
24.
Baek
,
S. G.
,
J. J.
Magda
, and
R. G.
Larson
, “
Rheological differences among liquid-crystalline polymers.1. The 1st and 2nd normal stress differences of Pbg solutions
,”
J. Rheol.
37
(
6
),
1201
1224
(
1993
).
25.
Baek
,
S. G.
,
J. J.
Magda
,
R. G.
Larson
, and
S. D.
Hudson
, “
Rheological differences among liquid-crystalline polymers. II. Disappearance of negative N1 in densely packed lyotropes and thermotropes
,”
J. Rheol.
38
(
5
),
1473
1503
(
1994
).
26.
Lee
,
J. Y.
,
J. J.
Magda
,
H.
Hu
, and
R. G.
Larson
, “
Cone angle effects, radial pressure profile, and second normal stress difference for shear-thickening wormlike micelles
,”
J. Rheol.
46
(
1
),
195
208
(
2002
).
27.
Schweizer
,
T.
,
J.
Hostettler
, and
F.
Mettler
, “
A shear rheometer for measuring shear stress and both normal stress differences in polymer melts simultaneously: The MTR 25
,”
Rheol. Acta
47
(
8
),
943
957
(
2008
).
28.
Schweizer
,
T.
, and
W.
Schmidheiny
, “
A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids
,”
J. Rheol.
57
(
3
),
841
856
(
2013
).
29.
Meissner
,
J.
,
R. W.
Garbella
, and
J.
Hostettler
, “
Measuring normal stress differences in polymer melt shear flow
,”
J. Rheol.
33
(
6
),
843
864
(
1989
).
30.
Schweizer
,
T.
, “
Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool
,”
Rheol. Acta
41
(
4
),
337
344
(
2002
).
31.
Schweizer
,
T.
, “
Comparing cone-partitioned plate and cone-standard plate shear rheometry of a polystyrene melt
,”
J. Rheol.
47
(
4
),
1071
1085
(
2003
).
32.
Schweizer
,
T.
,
J.
van Meerveld
, and
H. C.
Öttinger
, “
Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution—Experiment and theory
,”
J. Rheol.
48
(
6
),
1345
1363
(
2004
).
33.
Costanzo
,
S.
,
G.
Ianniruberto
,
G.
Marrucci
, and
D.
Vlassopoulos
, “
Measuring and assessing first and second normal stress differences of polymeric fluids with a modular cone-partitioned plate geometry
,”
Rheol. Acta
57
(
5
),
363
376
(
2018
).
34.
Maklad
,
O.
, and
R. J.
Poole
, “
A review of the second normal-stress difference; its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions
,”
J. Non-Newtonian Fluid Mech.
292
,
104522
(
2021
).
35.
Chan
,
S. T.
,
S.
Varchanis
,
S. J.
Haward
, and
A. Q.
Shen
, “
Perspective on edge fracture
,”
J. Rheol.
67
(
4
),
949
963
(
2023
).
36.
Costanzo
,
S.
,
D.
Parisi
,
T.
Schweizer
, and
D.
Vlassopoulos
, “
Nonlinear shear rheometry: Brief history, recent progress, and challengesa) this manuscript was handled by editorial board member R. H. Colby
,”
J. Rheol.
68
(
6
),
1013
1036
(
2024
).
37.
Tanner
,
R. I.
, and
M.
Keentok
, “
Shear fracture in cone-plate rheometry
,”
J. Rheol.
27
(
1
),
47
57
(
1983
).
38.
Hemingway
,
E. J.
,
H.
Kusumaatmaja
, and
S. M.
Fielding
, “
Edge fracture in complex fluids
,”
Phys. Rev. Lett.
119
(
2
),
028006
(
2017
).
39.
Inn
,
Y. W.
,
K. F.
Wissbrun
, and
M. M.
Denn
, “
Effect of edge fracture on constant torque rheometry of entangled polymer solutions
,”
Macromolecules
38
(
22
),
9385
9388
(
2005
).
40.
Snijkers
,
F.
, and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ARES rheometer with temperature control
,”
J. Rheol.
55
(
6
),
1167
1186
(
2011
).
41.
Hemingway
,
E. J.
, and
S. M.
Fielding
, “
Edge-induced shear banding in entangled polymeric fluids
,”
Phys. Rev. Lett.
120
(
13
),
138002
(
2018
).
42.
Hemingway
,
E. J.
, and
S. M.
Fielding
, “
Edge fracture instability in sheared complex fluids: Onset criterion and possible mitigation strategy
,”
J. Rheol.
63
(
5
),
735
750
(
2019
).
43.
Hemingway
,
E. J.
, and
S. M.
Fielding
, “
Interplay of edge fracture and shear banding in complex fluids
,”
J. Rheol.
64
(
5
),
1147
1159
(
2020
).
44.
Chan
,
S. T.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Prevention of edge fracture using a nontoxic liquid metal sealant
,”
Phys. Fluids
35
(
1
),
011704
(
2023
).
45.
Ravindranath
,
S.
,
S.-Q.
Wang
,
M.
Olechnowicz
,
V. S.
Chavan
, and
R. P.
Quirk
, “
How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures
,”
Rheol. Acta
50
(
2
),
97
105
(
2011
).
46.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
(
5
),
1411
1428
(
2013
).
47.
Wang
,
S.-Q.
,
G.
Liu
,
S.
Cheng
,
P. E.
Boukany
,
Y.
Wang
, and
X.
Li
, “
Letter to the editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
(
4
),
1059
1069
(
2014
).
48.
Li
,
Y.
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Response to: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
(
4
),
1071
1082
(
2014
).
49.
Li
,
B.
,
C.
Pyromali
,
S.
Costanzo
,
A.
Mavromanolakis
, and
D.
Vlassopoulos
, “
A practical guide to mitigate edge fracture instability in sheared polymer melts
,”
Phys. Fluids
36
(
3
), 037148 (
2024
).
50.
Fetters
,
L. J.
,
D. J.
Lohse
, and
R. H.
Colby
, “
Chain dimensions and entanglement spacings
,” in
Physical Properties of Polymers Handbook
, edited by
J. E.
Mark
(
Springer
,
New York
,
2007
), pp.
447
454
.
51.
Kapnistos
,
M.
,
D.
Vlassopoulos
,
J.
Roovers
, and
L. G.
Leal
, “
Linear rheology of architecturally complex macromolecules:  Comb polymers with linear backbones
,”
Macromolecules
38
(
18
),
7852
7862
(
2005
).
52.
Parisi
,
D.
,
S.
Costanzo
,
Y.
Jeong
,
J.
Ahn
,
T.
Chang
,
D.
Vlassopoulos
,
J. D.
Halverson
,
K.
Kremer
,
T.
Ge
,
M.
Rubinstein
,
G. S.
Grest
,
W.
Srinin
, and
A. Y.
Grosberg
, “
Nonlinear shear rheology of entangled polymer rings
,”
Macromolecules
54
(
6
),
2811
2827
(
2021
).
53.
Likhtman
,
A. E.
, and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
(
16
),
6332
6343
(
2002
).
54.
Milner
,
S. T.
,
T. C. B.
McLeish
, and
A. E.
Likhtman
, “
Microscopic theory of convective constraint release
,”
J. Rheol.
45
(
2
),
539
563
(
2001
).
55.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
(
5
),
1171
1200
(
2003
).
56.
Auhl
,
D.
,
J.
Ramirez
,
A. E.
Likhtman
,
P.
Chambon
, and
C.
Fernyhough
, “
Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights
,”
J. Rheol.
52
(
3
),
801
835
(
2008
).
57.
Henson
,
D. J.
, and
M. E.
Mackay
, “
Effect of gap on the viscosity of monodisperse polystyrene melts: Slip effects
,”
J. Rheol.
39
(
2
),
359
373
(
1995
).
58.
Chatzigiannakis
,
E.
,
M.
Ebrahimi
, and
S. G.
Hatzikiriakos
, “
On the molecular weight dependence of slip velocity of polymer melts
,”
J. Rheol.
61
(
4
),
731
739
(
2017
).
59.
Schweizer
,
T.
, and
A.
Bardow
, “
The role of instrument compliance in normal force measurements of polymer melts
,”
Rheol. Acta
45
(
4
),
393
402
(
2006
).
60.
Menezes
,
E. V.
, and
W. W.
Graessley
, “
Nonlinear rheological behavior of polymer systems for several shear-flow histories
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
(
10
),
1817
1833
(
1982
).
61.
Ebrahimi
,
M.
,
V. K.
Konaganti
, and
S. G.
Hatzikiriakos
, “
Dynamic slip of polydisperse linear polymers using partitioned plate
,”
Phys. Fluids
30
(
3
),
030601
(
2018
).
62.
Costanzo
,
S.
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
(
10
),
3925
3935
(
2016
).
63.
Hatzikiriakos
,
S. G.
, “
Wall slip of molten polymers
,”
Prog. Polym. Sci.
37
(
4
),
624
643
(
2012
).
64.
Venerus
,
D. C.
,
O.
Machabeli
,
D.
Bushiri
, and
S. M.
Arzideh
, “
Evidence for chaotic behavior during the yielding of a soft particle glass
,”
Phys. Rev. Lett.
129
(
6
),
068002
(
2022
).
65.
Hansen
,
M. G.
, and
F.
Nazem
, “
Transient normal force transducer response in a modified weissenberg rheogoniometer
,”
Trans. Soc. Rheol.
19
(
1
),
21
36
(
1975
).
66.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
A simple constitutive equation for entangled polymers with chain stretch
,”
J. Rheol.
45
(
6
),
1305
1318
(
2001
).
67.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
(
2
),
241
246
(
1996
).
68.
Doi
,
M.
,
S. F.
Edwards
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
, New York,
1988
).
69.
Winter
,
H. H.
, “
Viscous dissipation in shear flows of molten polymers
,” in
Advances in Heat Transfer
, edited by
J. P.
Hartnett
and
T. F.
Irvine
(
Elsevier
, Amsterdam, Netherlands,
1977
), pp.
205
267
.
70.
Awati
,
K. M.
,
Y.
Park
,
E.
Weisser
, and
M. E.
Mackay
, “
Wall slip and shear stresses of polymer melts at high shear rates without pressure and viscous heating effects
,”
J. Non-Newtonian Fluid Mech.
89
(
1
),
117
131
(
2000
).
71.
Mackay
,
M. E.
, and
D. J.
Henson
, “
The effect of molecular mass and temperature on the slip of polystyrene melts at low stress levels
,”
J. Rheol.
42
(
6
),
1505
1517
(
1998
).
72.
Laun
,
H. M.
, “
Prediction of elastic strains of polymer melts in shear and elongation
,”
J. Rheol.
30
(
3
),
459
501
(
1986
).
73.
Magda
,
J. J.
, and
S. G.
Baek
, “
Concentrated entangled and semidilute entangled polystyrene solutions and the second normal stress difference
,”
Polymer
35
(
6
),
1187
1194
(
1994
).
74.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Carl Hanser Verlag GmbH Co KG
, Cincinnati, OH,
2018
).
75.
Baird
,
D.
,
R.
Ballman
, and
A.
Everage
, “
Dependence of the primary normal-stress difference coefficient on molecular weight for concentrated solutions of rodlike molecules
,”
Rheol. Acta
19
,
183
186
(
1980
).
You do not currently have access to this content.