The flow behavior of magnetic suspensions made of nonmagnetic spherical particles surface-decorated by a magnetic shell is investigated in this study. Suspensions of SiO2@Fe3O4 homogeneous particles (HPs) (the so-called core/shell particles) and SiO2@Fe3O4 Janus particles (JPs) were compared in terms of their rheological properties. Particle surface characteristics and the contribution of anisotropic magnetization of JPs to interparticle interactions were investigated for the first time. Higher shear viscosity, shear stress, and viscoelastic modulus were obtained in magnetic HP suspensions. However, upon elimination of the saturation magnetization effect of particles, higher shear viscosity was achieved in magnetic JP suspensions due to the more significant contribution of the contact force in the JP systems. The dependence of the magnetorheological (MR) properties on the magnetic particle concentration and magnetic field strength was also evaluated for HP and JP suspensions. These two magnetic systems deviate from conventional MR fluids because the magnetization is generated by the magnetic shell instead of the core of the particles. These observations provide new insights and opportunities for designing MR fluids.

1.
Peng
,
Y.
, and
P.
Pei
, “
Microstructure evolution based particle chain model for shear yield stress of magnetorheological fluids
,”
J. Intell. Mater. Syst. Struct.
32
(
1
),
49
64
(
2021
).
2.
Zablotsky
,
D.
,
S.
Kralj
,
G.
Kitenbergs
, and
M. M.
Maiorov
, “
Relating magnetization, structure and rheology in ferrofluids with multi-core magnetic nanoparticles
,”
J. Non-Newtonian Fluid Mech.
278
,
104248
104254
(
2020
).
3.
Liu
,
G.
,
F.
Gao
,
D.
Wang
, and
W. H.
Liao
, “
Medical applications of magnetorheological fluid: A systematic review
,”
Smart Mater. Struct.
31
(
4
),
043002
043025
(
2022
).
4.
Laun
,
H. M.
,
C.
Gabriel
, and
C.
Kieburg
, “
Twin gap magnetorheometer using ferromagnetic steel plates—performance and validation
,”
J. Rheol.
54
(
2
),
327
354
(
2010
).
5.
Marins
,
J. A.
,
T.
Plachý
, and
P.
Kuzhir
, “
Iron–sepiolite magnetorheological fluids with improved performances
,”
J. Rheol.
63
(
1
),
125
139
(
2019
).
6.
Zablotsky
,
D.
,
E.
Blums
, and
H. J.
Herrmann
, “
Self-assembly and rheology of dipolar colloids in simple shear studied using multi-particle collision dynamics
,”
Soft Matter
13
(
37
),
6474
6489
(
2017
).
7.
Grzelczak
,
M.
,
J.
Vermant
,
E. M.
Furst
, and
L. M.
Liz-Marzán
, “
Directed self-assembly of nanoparticles
,”
ACS Nano
4
(
7
),
3591
3605
(
2010
).
8.
Moberg
,
T.
,
K.
Sahlin
,
K.
Yao
,
S.
Geng
,
G.
Westman
,
Q.
Zhou
,
K.
Oksman
, and
M.
Rigdahl
, “
Rheological properties of nanocellulose suspensions: Effects of fibril/particle dimensions and surface characteristics
,”
Cellulose
24
(
6
),
2499
2510
(
2017
).
9.
Wang
,
H.
,
T.
Chang
,
Y.
Li
,
S.
Li
,
G.
Zhang
,
J.
Wang
,
J.
Li
, “
Characterization of nonlinear viscoelasticity of magnetorheological grease under large oscillatory shear by using Fourier transform-Chebyshev analysis
,”
J. Intell. Mater. Syst. Struct.
32
(
6
),
614
631
(
2021
).
10.
Pastoriza-Gallego
,
M. J.
,
M.
Pérez-Rodríguez
,
C.
Gracia-Fernández
, and
M. M.
Piñeiro
, “
Study of viscoelastic properties of magnetic nanofluids: An insight into their internal structure
,”
Soft Matter
9
(
48
),
11690
11698
(
2013
).
11.
Jiang
,
F.
, and
Y. L.
Hsieh
, “
Chemically and mechanically isolated nanocellulose and their self-assembled structures
,”
Carbohydr. Polym.
95
(
1
),
32
40
(
2013
).
12.
Zhu
,
W.
,
X.
Dong
,
H.
Huang
, and
M.
Qi
, “
Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability
,”
J. Magn. Magn. Mater.
491
,
165556
165562
(
2019
).
13.
Bossis
,
G.
,
P.
Kuzhir
,
M. T.
López-López
,
A.
Meunier
, and
C.
Magnet
, “
Importance of interparticle friction and rotational diffusion to explain recent experimental results in the rheology of magnetic suspensions
,”
Magnetorheology: Advances and Applications
(
2013
), Chap. 1, pp.
1
30
.
14.
López-López
,
M. T.
,
P.
Kuzhir
, and
G.
Bossis
, “
Magnetorheology of fiber suspensions. I. Experimental
,”
J. Rheol.
53
(
1
),
115
126
(
2009
).
15.
Pei
,
L.
,
S.
Xuan
,
H.
Pang
, and
X.
Gong
, “
Influence of interparticle friction on the magneto-rheological effect for magnetic fluid: A simulation investigation
,”
Smart Mater. Struct.
29
(
11
),
115002
115012
(
2020
).
16.
Burrows
,
N. D.
,
A. M.
Vartanian
,
N. S.
Abadeer
,
E. M.
Grzincic
,
L. M.
Jacob
,
W.
Lin
,
J.
Li
,
J. M.
Dennison
,
J. G.
Hinman
, and
C. J.
Murphy
, “
Anisotropic nanoparticles and anisotropic surface chemistry
,”
J. Phys. Chem. Lett.
7
(
4
),
632
641
(
2016
).
17.
Yang
,
L.
,
Z.
Zhou
,
J.
Song
, and
X.
Chen
, “
Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications
,”
Chem. Soc. Rev.
48
(
19
),
5140
5176
(
2019
).
18.
Erb
,
R. M.
,
J. J.
Martin
,
R.
Soheilian
,
C.
Pan
, and
J. R.
Barber
, “
Actuating soft matter with magnetic torque
,”
Adv. Funct. Mater.
26
(
22
),
3859
3880
(
2016
).
19.
Rahman
,
M. M.
,
F.
Montagne
,
H.
Fessi
, and
A.
Elaissari
, “
Anisotropic magnetic microparticles from ferrofluid emulsion
,”
Soft Matter
7
,
1483
1490
(
2011
).
20.
Long
,
T. W.
,
U. M.
Córdova-Figueroa
, and
I.
Kretzschmar
, “
Measuring modeling, and predicting the magnetic assembly rate of 2D-staggered Janus particle chains
,”
Langmuir
35
(
24
),
8121
8130
(
2019
).
21.
Novak
,
E. V.
,
E. S.
Pyanzina
, and
S. S.
Kantorovich
, “
Behaviour of magnetic Janus-like colloids
,”
J. Phys.: Condens. Matter
27
(
23
),
234102
234112
(
2015
).
22.
Ren
,
B.
,
A.
Ruditskiy
,
J. H.
Song
, and
I.
Kretzschmar
, “
Assembly behavior of iron oxide-capped Janus particles in a magnetic field
,”
Langmuir
28
,
1149
1156
(
2012
).
23.
Ruditskiy
,
A.
,
B.
Ren
, and
I.
Kretzschmar
, “
Behaviour of iron oxide (Fe3O4) Janus particles in overlapping external AC electric and static magnetic fields
,”
Soft Matter
9
(
38
),
9174
9181
(
2013
).
24.
Xie
,
Q.
,
G. B.
Davies
, and
J.
Harting
, “
Direct assembly of magnetic Janus particles at a droplet interface
,”
ACS Nano
11
(
11
),
11232
11239
(
2017
).
25.
Teo
,
B. M.
,
D. J.
Young
, and
X. J.
Loh
, “
Magnetic anisotropic particles: Toward remotely actuated applications
,”
Part. Part. Syst. Charact.
33
(
10
),
709
728
(
2016
).
26.
Honciuc
,
A.
, “
Amphiphilic Janus particles at interfaces
,” in
Flowing Matter
, edited by
F.
Toschi
and
M.
Sega
(
Springer International
,
Cham
,
2019
), pp.
95
136
.
27.
Steinbach
,
G.
,
S.
Gemming
, and
A.
Erbe
, “
Non-equilibrium dynamics of magnetically anisotropic particles under oscillating fields
,”
Eur. Phys. J. E
39
(
7
),
69
77
(
2016
).
28.
Shields
,
C. W.
, and
O. D.
Velev
, “
The evolution of active particles: Toward externally powered self-propelling and self-reconfiguring particle systems
,”
Chem
3
(
4
),
539
559
(
2017
).
29.
Velev
,
O. D.
,
S.
Gangwal
, and
D. N.
Petsev
, “
Particle-localized AC and DC manipulation and electrokinetics
,”
Ann. Rep. Sect. "C" (Phys. Chem.)
105
,
213
246
(
2009
).
30.
Yue
,
L.
,
W.
Pu
,
T.
Zhao
,
J.
Zhuang
, and
S.
Zhao
, “
A high performance magnetically responsive Janus nano-emulsifier: Preparation, emulsification characteristics, interfacial rheology, and application in emulsion flooding
,”
J. Pet. Sci. Eng.
208
,
109478
109489
(
2022
).
31.
Habibi
,
S.
,
S.
Bryant
,
R.
Shor
, and
G.
Natale
, “
Superparamagnetic SiO2@Fe3O4 core/shell fabrication via low-temperature electroless deposition
,”
Mater. Chem. Phys.
277
,
125443
125451
(
2022
).
32.
Ghimire
,
P. P.
, and
M.
Jaroniec
, “
Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities
,”
J. Colloid Interface Sci.
584
,
838
865
(
2021
).
33.
Abràmoff
,
M. D.
,
P. J.
Magalhães
, and
S. J.
Ram
, “
Image processing with ImageJ
,”
Biophotonics Int.
11
(
7
),
36
41
(
2004
).
34.
Guazzelli
,
É
, and
O.
Pouliquen
, “
Rheology of dense granular suspensions
,”
J. Fluid Mech.
852
,
11
173
(
2018
).
35.
Rutgers
,
I. R.
, “
Relative viscosity and concentration
,”
Rheol. Acta
2
(
4
),
305
348
(
1962
).
36.
Li
,
J.
,
X.
Jiang
,
A.
Singh
,
O. G.
Heinonen
,
J. P.
Hernández-Ortiz
, and
J. J.
de Pablo
, “
Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders
,”
J. Chem. Phys.
152
(
20
),
204109
204121
(
2020
).
37.
Ivanov
,
A. O.
, and
A.
Zubarev
, “
Chain formation and phase separation in ferrofluids: The influence on viscous properties
,”
Materials
13
(
18
),
3956
3982
(
2020
).
38.
Zhou
,
J.
,
J.
Mo
,
C.
Shao
, and
Z.
Li
, “
Effects of magnetized walls on the particle structure and the yield stress of magnetorheological fluids
,”
J. Magn. Magn. Mater.
389
,
124
129
(
2015
).
39.
Saha
,
P.
,
S.
Mukherjee
, and
K.
Mandal
, “
Rheological response of magnetic fluid containing Fe3O4 nano structures
,”
J. Magn. Magn. Mater.
484
,
324
328
(
2019
).
40.
Kohale
,
S. C.
, and
R.
Khare
, “
Molecular dynamics simulation study of friction force and torque on a rough spherical particle
,”
J. Chem. Phys.
132
(
23
),
234706
234714
(
2010
).
41.
Klapp
,
S. H. L.
, “
Collective dynamics of dipolar and multipolar colloids: From passive to active systems
,”
Curr. Opin. Colloid Interface Sci.
21
,
76
85
(
2016
).
42.
Massana-Cid
,
H.
,
F.
Meng
,
D.
Matsunaga
,
R.
Golestanian
, and
P.
Tierno
, “
Tunable self-healing of magnetically propelling colloidal carpets
,”
Nat. Commun.
10
,
2444
2452
(
2019
).
43.
Jahan
,
N.
,
S.
Pathak
,
K.
Jain
, and
R. P.
Pant
, “
Enhancment in viscoelastic properties of flake-shaped iron based magnetorheological fluid using ferrofluid
,”
Colloids Surf., A
529
,
88
94
(
2017
).
44.
Anupama
,
A. V.
,
V.
Kumaran
, and
B.
Sahoo
, “
Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids
,”
J. Ind. Eng. Chem.
67
,
347
357
(
2018
).
45.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
H.
Zhang
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
Generality of shear thickening in dense suspensions
,”
Nat. Mater.
9
,
220
224
(
2010
).
46.
Hassan
,
M.
,
F.
Mebarek-Oudina
,
A.
Faisal
,
A.
Ghafar
, and
A. I.
Ismail
, “
Thermal energy and mass transport of shear thinning fluid under effects of low to high shear rate viscosity
,”
Int. J. Thermofluids
15
,
100176
100184
(
2022
).
47.
Volkova
,
O.
,
S.
Cutillas
,
P.
Carletto
,
G.
Bossis
,
A.
Cebers
, and
A.
Meunier
, “
Flow-induced structures in magnetorheological suspensions
,”
J. Magn. Magn. Mater.
201
(
1–3
),
66
69
(
1999
).
48.
Cutillas
,
S.
,
G.
Bossis
, and
A.
Cebers
, “
Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions
,”
Phys. Rev. E
57
(
1
),
804
811
(
1998
).
49.
Cao
,
J. G.
,
J. P.
Huang
, and
L. W.
Zhou
, “
Structure of electrorheological fluids under an electric field and a shear flow: Experiment and computer simulation
,”
J. Phys. Chem. B
110
(
24
),
11635
11639
(
2006
).
50.
Liu
,
T.
,
X.
Gong
,
Y.
Xu
,
S.
Xuan
, and
W.
Jiang
, “
Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers
,”
Soft Matter
9
(
42
),
10069
10080
(
2013
).
51.
Mohammad Mehdipour
,
N.
,
N.
Reddy
,
R. J.
Shor
, and
G.
Natale
, “
Orientation dynamics of anisotropic and polydisperse colloidal suspensions
,”
Phys. Fluids
34
(
8
),
083317
083331
(
2022
).
52.
Ruiz-López
,
J. A.
,
J. C.
Fernández-Toledano
,
R.
Hidalgo-Alvarez
, and
J.
De Vicente
, “
Testing the mean magnetization approximation, dimensionless and scaling numbers in magnetorheology
,”
Soft Matter
12
,
1468
1476
(
2016
).
53.
Klingenberg
,
D. J.
,
J. C.
Ulicny
, and
M. A.
Golden
, “
Mason numbers for magnetorheology
,”
J. Rheol.
51
(
5
),
883
893
(
2007
).
54.
Sherman
,
S. G.
,
A. C.
Becnel
, and
N. M.
Wereley
, “
Relating Mason number to Bingham number in magnetorheological fluids
,”
J. Magn. Magn. Mater.
380
,
98
104
(
2015
).
55.
Vinod
,
S.
, and
J.
Philip
, “
Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions
,”
Adv. Colloid Interface Sci.
307
,
102729
102755
(
2022
).
56.
Ruiz-López
,
J. A.
,
R.
Hidalgo-Alvarez
, and
J.
De Vicente
, “
Towards a universal master curve in magnetorheology
,”
Smart Mater. Struct.
26
,
054001
054007
(
2017
).
57.
Sahoo
,
R.
,
P.
Ussa-Aldana
,
D.
Lancon
,
F.
Rondelez
,
J. R.
Morillas
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
Design of smart lubricants using the inverse ferrofluid approach
,”
Tribol. Int.
166
,
107346
107352
(
2022
).
58.
Pálovics
,
P.
, and
M.
Rencz
, “
Investigation of the motion of magnetic nanoparticles in microfluidics with a micro domain model
,”
Microsyst. Technol.
28
(
6
),
1545
1559
(
2022
).
59.
Guo
,
C. W.
,
F.
Chen
,
Q. R.
Meng
, and
Z. X.
Dong
, “
Yield shear stress model of magnetorheological fluids based on exponential distribution
,”
J. Magn. Magn. Mater.
360
,
174
177
(
2014
).
60.
Pei
,
L.
,
S.
Xuan
,
J.
Wu
,
L.
Bai
, and
X.
Gong
, “
Experiments and simulations on the magnetorheology of magnetic fluid based on Fe3O4 hollow chains
,”
Langmuir
35
(
37
),
12158
12167
(
2019
).
61.
Xue
,
X.
, and
E. P.
Furlani
, “
Analysis of the dynamics of magnetic core-shell nanoparticles and self-assembly of crystalline superstructures in gradient fields
,”
J. Phys. Chem. C
119
,
5714
5726
(
2015
).
62.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
218306
(
2013
).
63.
Luding
,
S.
, “
Cohesive, frictional powders: Contact models for tension
,”
Granul. Matter
10
,
235
246
(
2008
).
64.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
65.
Misra
,
I.
, and
V.
Kumaran
, “
Dynamics of a magnetic particle in an oscillating magnetic field
,”
Phys. Rev. Fluids
9
(
7
),
074303
074329
(
2024
).
66.
Rikken
,
R. S. M.
,
R. J. M.
Nolte
,
J. C.
Maan
,
J. C. M.
Van Hest
,
D. A.
Wilson
, and
P. C. M.
Christianen
, “
Manipulation of micro- and nanostructure motion with magnetic fields
,”
Soft Matter
10
,
1295
1308
(
2014
).
67.
De Vicente
,
J.
,
D. J.
Klingenberg
, and
R.
Hidalgo-Alvarez
, “
Magnetorheological fluids: A review
,”
Soft Matter
7
(
8
),
3701
3710
(
2011
).
68.
Seo
,
Y. P.
,
H. J.
Choi
,
J. R.
Lee
, and
Y.
Seo
, “
Modeling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles
,”
Colloids Surf., A
457
(
1
),
363
367
(
2014
).
69.
Choi
,
J.
,
S.
Han
,
J.
Kim
, and
Y.
Seo
, “
Strong and stable magnetorheological fluids based on flaky Sendust-Co0.4Fe0.4Ni0.2 nanocomposite particles
,”
ACS Appl. Mater. Interfaces
13
(
22
),
26581
26589
(
2021
).
70.
Ginder
,
J. M.
,
L. C.
Davis
, and
L. D.
Elie
, “
Rheology of magnetorheological fluids: Models and measurements
,”
Int. J. Mod. Phys. B
10
(
23–24
),
3293
3303
(
1996
).
71.
Ginder
,
J. M.
, and
L. C.
Davis
, “
Shear stresses in magnetorheological fluids: Role of magnetic saturation
,”
Appl. Phys. Lett.
65
(
26
),
3410
3412
(
1994
).
72.
Seo
,
Y. P.
,
S.
Kwak
,
H. J.
Choi
, and
Y.
Seo
, “
Static yield stress of a magnetorheological fluid containing pickering emulsion polymerized Fe2O3/polystyrene composite particles
,”
J. Colloid Interface Sci.
463
,
272
278
(
2016
).
73.
Khajehsaeid
,
H.
,
N.
Alaghehband
, and
P. K.
Bavil
, “
On the yield stress of magnetorheological fluids
,”
Chem. Eng. Sci.
256
,
117699
117706
(
2022
).
74.
Ghaffari
,
A.
,
S. H.
Hashemabadi
, and
M.
Ashtiani
, “
A review on the simulation and modeling of magnetorheological fluids
,”
J. Intell. Mater. Syst. Struct.
26
(
8
),
881
904
(
2015
).
75.
Kim
,
Y. J.
,
Y. D.
Liu
,
Y.
Seo
, and
H. J.
Choi
, “
Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their magnetoresponsive characteristics
,”
Langmuir.
29
,
4959
4965
(
2013
).
76.
Vereda
,
F.
,
J.
De Vicente
,
J. P.
Segovia-Gutiérrez
, and
R.
Hidalgo-Alvarez
, “
Average particle magnetization as an experimental scaling parameter for the yield stress of dilute magnetorheological fluids
,”
J. Phys. D: Appl. Phys.
44
(
42
),
425002
425009
(
2011
).
77.
Kwon
,
S. H.
,
J. H.
Lee
, and
H. J.
Choi
, “
Magnetic particle filled elastomeric hybrid composites and their magnetorheological response
,”
Materials
11
(
6
),
1040
1060
(
2018
).
78.
Setz
,
L. F. G.
,
A. C.
Silva
,
S. C.
Santos
,
S. R. H.
Mello-Castanho
, and
M. R.
Morelli
, “
A viscoelastic approach from α-Al2O3 suspensions with high solids content
,”
J. Eur. Ceram. Soc.
33
(
15–16
),
3211
3219
(
2013
).
79.
Kim
,
J. E.
,
J. D.
Ko
,
Y. D.
Liu
,
I. G.
Kim
, and
H. J.
Choi
, “
Effect of medium oil on magnetorheology of soft carbonyl iron particles
,”
IEEE Trans. Magn.
48
(
11
),
3442
3445
(
2012
).
80.
Katiyar
,
A.
,
P.
Dhar
,
T.
Nandi
, and
S. K.
Das
, “
Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids
,”
J. Magn. Magn. Mater.
436
,
35
46
(
2017
).
81.
Guo
,
F.
,
C. B.
Du
, and
R. P.
Li
, “
Viscoelastic parameter model of magnetorheological elastomers based on Abel dashpot
,”
Adv. Mech. Eng.
6
,
629386
629382
(
2014
).
You do not currently have access to this content.