The present article explains the nontrivial synergetic effect of wall slip, compressibility, and thixotropy in a pressurized flow startup operation of various structured fluids. Opposite to intuition, experimental and numerical simulations suggest that the wall slip (adhesive failure) facilitates gel degradation (cohesive failure), revealing a new flow startup mechanism. The irreversible thixotropic rheological model, along with the static slip-based model, is utilized to describe the structural degradation kinetics in the bulk phenomenon and the near-wall phenomenon, respectively. The near-wall transient variations in axial velocity or strain evolution and the initial pressure propagation mechanism along the axis of the circular pipe explain the essence of the aforementioned synergy. Finally, a comparative study of the effect of wall slip on the pressure propagation mechanisms and startup flow of generalized Newtonian fluids, viscoelastic based thixotropic fluids, and viscoelastic solids is also performed. Wall slip can convert no-steady-state thixotropic elasto-viscoplastic flow cases into a steady-state fluid flow, whereas it causes viscoelastic solids to move with a slip velocity. Additionally, our study revealed that stick-slip phenomena occur at an acoustic time scale. It requires a compressive wave to travel with information of stick position to the outlet and again back to the inlet, concomitantly causing the release of additional fluid, thereby converting the stick to a slip regime. Conventionally, stick-slip phenomena were mainly associated with nonlinearity. Hence, our study opened a new direction. Finally, concomitant with the experimental observations, we found that stick-slip phenomena disappear when the fluid is uniformly compressed and a steady state is reached.

1.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
2.
Wardhaugh
,
L.
, and
D.
Boger
, “
Flow characteristics of waxy crude oils: Application to pipeline design
,”
AIChE J.
37
,
871
885
(
1991
).
3.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Modern Phys.
89
,
035005
(
2017
).
4.
Goyon
,
J.
,
A.
Colin
,
G.
Ovarlez
,
A.
Ajdari
, and
L.
Bocquet
, “
Spatial cooperativity in soft glassy flows
,”
Nature
454
,
84
87
(
2008
).
5.
Malkin
,
A. Y.
, and
S. A.
Patlazhan
, “
Wall slip for complex liquids—Phenomenon and its causes
,”
Adv. Colloid Interface Sci.
257
,
42
57
(
2018
).
6.
Lettinga
,
M. P.
, and
S.
Manneville
, “
Competition between shear banding and wall slip in wormlike micelles
,”
Phys. Rev. Lett.
103
,
248302
(
2009
).
7.
Liu
,
Y.
, and
J. R.
de Bruyn
, “
Start-up flow of a yield-stress fluid in a vertical pipe
,”
J. Non-Newtonian Fluid Mech.
257
,
50
58
(
2018
).
8.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
,
81
103
(
2016
).
9.
Black
,
W. B.
, and
M. D.
Graham
, “
Wall slip and polymer-melt flow instability
,”
Phys. Rev. Lett.
77
,
956
959
(
1996
).
10.
Boukany
,
P. E.
, and
S.-Q.
Wang
, “
Exploring origins of interfacial yielding and wall slip in entangled linear melts during shear or after shear cessation
,”
Macromolecules
42
,
2222
2228
(
2009
).
11.
Marinho
,
T. O.
,
F. H.
Marchesini
,
M. C. K.
de Oliveira
, and
M.
Nele
, “
Apparent wall slip effects on rheometric measurements of waxy gels
,”
J. Rheol.
65
,
257
272
(
2021
).
12.
Seth
,
J. R.
,
C.
Locatelli-Champagne
,
F.
Monti
,
T.
Bonnecaze
, and
M.
Cloitre
, “
How do soft particle glasses yield and flow near solid surfaces?
,”
Soft Matter
8
,
140
148
(
2012
).
13.
Graham
,
M. D.
, “
Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows
,”
J. Rheol.
39
,
697
712
(
1995
).
14.
Walls
,
H. J.
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
,
847
868
(
2003
).
15.
Bertola
,
V.
,
F.
Bertrand
,
H.
Tabuteau
,
D.
Bonn
, and
P.
Coussot P
, “
Wall slip and yielding in pasty materials
,”
J. Rheol.
47
,
1211
1226
(
2003
).
16.
Zhu
,
Y.
, and
S.
Granick
, “
Limits of the hydrodynamic no-slip boundary condition
,”
Phys. Rev. Lett.
88
,
106102
(
2002
).
17.
Brochard
,
F.
, and
P. G.
De Gennes
, “
Shear-dependent slippage at a polymer/solid interface
,”
Langmuir
8
,
3033
3037
(
1992
).
18.
De Gennes
,
P. G.
, “
On fluid/wall slippage
,”
Langmuir
18
,
3413
3414
(
2002
).
19.
Shinde
,
S. B.
, and
L.
Kumar
, “
New method for gelation temperature measurement without disturbing the crystal network
,”
Ind. Eng. Chem. Res.
60
,
8565
8578
(
2021
).
20.
Shinde
,
S. B.
, and
L.
Kumar
, “
Influence of the thermal shrinkage-induced volume contraction on the yielding behavior of waxy oil
,”
J. Rheol.
68
,
603
622
(
2024
).
21.
Mooney
,
M.
, “
Explicit formulas for slip and fluidity
,”
J. Rheol.
2
,
210
222
(
1931
).
22.
Spikes
,
H.
, and
S.
Granick
, “
Equation for slip of simple liquids at smooth solid surfaces
,”
Langmuir
19
,
5065
5071
(
2003
).
23.
Barnes
,
H. A.
, “
A review of the slip (wall depletion) of polymer solutions, emulsions, and particle suspensions in viscometers: Its cause, character and cure
,”
J. Non-Newtonian Fluid Mech.
56
,
221
251
(
1995
).
24.
Hatzikiriakos
,
S. G.
, “
Wall slip of molten polymers
,”
Prog. Polymer Sci.
37
,
624
643
(
2012
).
25.
Muravleva
,
L.
, “
Viscoplastic flow in a pipe of complex cross section with stick–slip at the wall
,”
Phys. Fluids
33
,
073107
(
2021
).
26.
Lee
,
H. S.
,
P.
Singh
,
W. H.
Thomason
, and
H. S.
Fogler
, “
Waxy oil gel breaking mechanisms: Adhesive versus cohesive failure
,”
Energy Fuels
22
,
480
487
(
2008
).
27.
Rodriguez-Fabia
,
S.
,
R.
Lopez Fyllingsnes
,
N.
Winter-Hjelm
,
J.
Norrman
, and
K. G.
Paso
, “
Influence of measuring geometry on rheomalaxis of macrocrystalline wax–oil gels: Alteration of breakage mechanism from adhesive to cohesive
,”
Energy Fuels
33
,
654
664
(
2019
).
28.
Davidson
,
M. R.
,
Q.
Dzuy Nguyen
,
C.
Chang
, and
H. P.
Rønningsen
, “
A model for restart of a pipeline with compressible gelled waxy crude oil
,”
J. Non-Newtonian Fluid Mech.
123
,
269
280
(
2004
).
29.
Kumar
,
L.
,
Y.
Zhao
,
K. G.
Paso
,
B.
Grimes
,
J.
Sjöblom
, and
C.
Lawrence
, “
Numerical study of pipeline restart of weakly compressible irreversibly thixotropic waxy crude oils
,”
AIChE J.
61
,
2657
2671
(
2015
).
30.
Kumar
,
L.
,
O.
Skjæraasen
,
K.
Hald
,
K. G.
Paso
, and
J.
Sjöblom
, “
Nonlinear rheology and pressure wave propagation in a thixotropic elasto-viscoplastic fluids, in the context of flow restart
,”
J. Non-Newtonian Fluid Mech.
231
,
11
25
(
2016
).
31.
Sanyal
,
A.
,
L.
Tikariha
, and
L.
Kumar
, “
The effects of partial preheating on pressure propagation and flow-restart phenomena in a clogged pipeline with a weakly compressible gel
,”
Phys. Fluids
33
,
043101
(
2021
).
32.
Chang
,
C.
,
Q. D.
Nguyen
, and
H. P.
Rønningsen
, “
Isothermal start-up of pipeline transporting waxy crude oil
,”
J. Non-Newtonian Fluid Mech.
87
,
127
154
(
1999
).
33.
De Souza Mendes
,
P. R.
, “
Modeling the thixotropic behavior of structured fluids
,”
J. Non-Newtonian Fluid Mech.
164
,
66
75
(
2009
).
34.
Zhao
,
Y.
,
L.
Kumar
,
K. G.
Paso
,
H.
Ali
,
J.
Safieva
, and
J.
Sjöblom
, “
Gelation and breakage behavior of model wax-oil systems: Rheological properties and model development
,”
Ind. Eng. Chem. Res.
51
,
8123
8133
(
2012
).
35.
Oliveira
,
G. M.
,
C. O. R.
Negrão
, and
A. T.
Franco
, “
Pressure transmission in Bingham fluids compressed within a closed pipe
,”
J. Non-Newtonian Fluid Mech.
169–170
,
121
125
(
2012
).
36.
Kumar
,
L.
, “
An algebraic thixotropic elasto-visco-plastic constitutive equation describing pre-yielding solid and post-yielding liquid behaviours
,”
J. Non-Newtonian Fluid Mech.
321
,
105105
(
2023
).
37.
Cawkwell
,
M.
, and
M.
Charles
, “
An improved model for start-up of pipelines containing gelled crude oil
,”
J. Pipelines
7
,
41
52
(
1987
).
38.
El-Gendy
,
H.
,
M.
Alcoutlabi
,
M.
Jemmett
,
M.
Deo
,
J.
Magda
,
R.
Venkatesan
, and
A.
Montesi
, “
The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry
,”
AIChE J.
58
,
302
311
(
2012
).
39.
Damianou
,
Y.
,
G. C.
Georgiou
, and
I.
Moulitsas
, “
Combined effects of compressibility and slip in flows of a Herschel–Bulkley fluid
,”
J. Non-Newtonian Fluid Mech.
193
,
89
102
(
2013
).
40.
Wu
,
C. W.
, and
G. J.
Ma
, “
Abnormal behavior of a hydrodynamic lubrication journal bearing caused by wall slip
,”
Tribol. Int.
38
(
5
),
492
499
(
2005
).
41.
Wang
,
P.
, and
T.
Reddyhoff
, “
Wall slip in an EHL contact lubricated with 1-dodecanol
,”
Tribol. Int.
113
,
197
205
(
2017
).
42.
Garg
,
A.
, “
Enhanced flow in deformable carbon nanotubes
,”
J. Appl. Phys.
135
,
074304
(
2024
).
43.
Vinay
,
G.
,
A.
Wachs
, and
J.-F.
Agassant
, “
Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils
,”
J. Non-Newtonian Fluid Mech.
136
,
93
105
(
2006
).
44.
Atwood
,
B. T.
, and
W. R.
Schowalter
, “
Measurements of slip at the wall during flow of high-density polyethylene through a rectangular conduit
,”
Rheol. Acta
28
,
134
146
(
1989
).
45.
Hatzikiriakos
,
S. G.
, and
J. M.
Dealy
, “
Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies
,”
J. Rheol.
35
,
497
523
(
1991
).
46.
Chaparian
,
E.
, and
O.
Tammisola
, “
Sliding flow of yield-stress fluids
,”
J. Fluid Mech.
911
,
A17
(
2021
).
47.
Oldroyd
,
J. G.
, “
On the formulation of rheological equation of state
,”
Proc. R. Soc. London Ser. A
200
,
523
541
(
1950
).
48.
Georgiou
,
G. C.
, and
M. J.
Crochet
, “
Compressible viscous flow in slits with slip at the wall
,”
J. Rheol.
38
,
639
654
(
1994
).
49.
Tikariha
,
L.
, and
L.
Kumar
, “
Pressure propagation and flow restart in the multi-plug gelled pipeline
,”
J. Fluid Mech.
911
,
A46
(
2021
).
50.
Barnes
,
H. A.
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
51.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
52.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
53.
Paso
,
K.
,
T.
Kompalla
,
H. J.
Oschmann
, and
J.
Sjöblom
, “
Rheological degradation of model wax-oil gels
,”
J. Dispersion Sci. Technol.
30
,
472
480
(
2009
).
54.
De Souza Mendes
,
P. R.
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
,
2471
2483
(
2011
).
55.
De Souza Mendes
,
P. R.
, and
R.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Non-Newtonian Fluid Mech.
187
,
8
15
(
2012
).
56.
Kumar
,
L.
,
C.
Lawrence
, and
J.
Sjöblom
, “
Mechanism of pressure propagation and weakly compressible homogeneous and heterogeneous thixotropic gel breakage to study flow restart
,”
RSC Adv.
4
,
27493
27501
(
2014
).
57.
Chang
,
C.
,
D. V.
Boger
, and
Q. D.
Nguyen
, “
The yielding of waxy crude oils
,”
Ind. Eng. Chem. Res.
37
,
1551
1559
(
1998
).
58.
De Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids
,”
Rheol. Acta
52
,
673
694
(
2013
).
59.
Mendes
,
R.
,
G.
Vinay
,
G.
Ovarlez
, and
P.
Coussot
, “
Modeling the rheological behavior of waxy crude oils as a function of flow and temperature history
,”
J. Rheol.
59
,
703
732
(
2015
).
60.
Tikariha
,
L.
, and
L.
Kumar
, “
Pressure propagation and flow restart in a pipeline filled with a gas pocket separated rheomalaxis elasto-viscoplastic waxy gel
,”
J. Non-Newtonian Fluid Mech.
294
,
104582
(
2021
).
61.
Fakroun
,
A.
, and
H.
Benkreira
, “
Rheology of waxy crude oils in relation to restart of gelled pipelines
,”
Chem. Eng. Sci.
211
,
115212
(
2020
).
62.
Petter Rønningsen
,
H.
, “
Rheological behavior of gelled, waxy North Sea crude oils
,”
J. Petroleum Sci. Eng.
7
,
177
213
(
1992
).
63.
Van Der Geest
,
C.
,
V. C. B.
Guersoni
, and
A. C.
Bannwart
, “
Experimental study of the time to restart the flow of a gelled waxy crude in rheometer and pipeline
,”
J. Petroleum Sci. Eng.
181
,
106247
(
2019
).
64.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in soft particle pastes
,”
Phys. Rev. Lett.
92
,
198302
(
2004
).
65.
Hirose
,
A.
, and
K.
Lonngren
,
Introduction to Wave Phenomena
(
Wiley
,
New York
,
1985
).
66.
Tanner
,
R. I.
, “
Partial wall slip in polymer flow
,”
Ind. Eng. Chem. Res.
33
,
2434
2436
(
1994
).
67.
Yang
,
K.
, and
W.
Yu
, “
Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear
,”
J. Rheol.
61
,
627
641
(
2017
).
68.
Møller
,
P. C. F.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
69.
Vinay
,
G.
,
A.
Wachs
, and
I.
Frigaard
, “
Start-up transients and efficient computation of isothermal waxy crude oil flows
,”
J. Non-Newtonian Fluid Mech.
143
,
141
156
(
2007
).
70.
Wachs
,
A.
,
G.
Vinay
, and
I.
Frigaard
, “
A 1.5D numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines
,”
J. Non-Newtonian Fluid Mech.
159
,
81
94
(
2009
).
71.
Houska
,
M.
, “
Engineering aspects of the rheology of thixotropic liquids
,”
Ph.D. thesis
,
Faculty of Mechanical Engineering, Czech Technical University of Prague
,
1981
.
You do not currently have access to this content.