Diverse chemical, energy, environmental, and industrial processes involve the flow of polymer solutions in porous media. The accumulation and dissipation of elastic stresses as the polymers are transported through the tortuous, confined pore space can lead to the development of an elastic flow instability above a threshold flow rate, producing a transition from steady to unsteady flow characterized by strong spatiotemporal fluctuations, despite the low Reynolds number ( Re 1). Furthermore, in 1D ordered arrays of pore constrictions, this unsteady flow can undergo a second transition to multistability, where distinct pores simultaneously exhibit distinct unsteady flow states. Here, we examine how this transition to multistability is influenced by fluid rheology. Through experiments using diverse polymer solutions having systematic variations in fluid shear-thinning or elasticity, in pore constriction arrays of varying geometries, we show that the onset of multistability can be described using a single dimensionless parameter, given sufficient fluid elasticity. This parameter, the streamwise Deborah number, compares the stress relaxation time of the polymer solution to the time required for the fluid to be advected between pore constrictions. Our work thus helps to deepen understanding of the influence of fluid rheology on elastic instabilities, helping to establish guidelines for the rational design of polymeric fluids with desirable flow behaviors.

1.
Kozicki
,
W.
, and
H.
Slegr
, “
Filtration in viscoelastic continua
,”
J. Non-Newton Fluid Mech.
53
,
129
149
(
1994
).
2.
Luo
,
M.
, and
I.
Teraoka
, “
High osmotic pressure chromatography for large-scale fractionation of polymers
,”
Macromolecules
29
,
4226
4233
(
1996
).
3.
Bourgeat
,
A.
,
O.
Gipouloux
, and
E.
Marusic-Paloka
, “
Filtration law for polymer flow through porous media
,”
Multiscale Model. Simul.
1
,
432
457
(
2003
).
4.
Petrie
,
C. J. S.
, and
M. M.
Denn
, “
Instabilities in polymer processing
,”
AIChE J
22
,
209
236
(
1976
).
5.
Denn
,
M. M.
,
Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer
(
Cambridge University
,
New York
,
2008
).
6.
Turner
,
B. N.
,
R.
Strong
, and
S. A.
Gold
, “
A review of melt extrusion additive manufacturing processes: I. Process design and modeling
,”
Rapid Protyp. J.
20
,
192
204
(
2014
).
7.
Elbadawi
,
M.
, “Polymeric additive manufacturing: The necessity and utility of rheology,” in Polymer Rheology (InTechOpen, London, 2018).
8.
Durst
,
F.
,
R.
Haas
, and
B. U.
Kaczmar
, “
Flows of dilute hydrolyzed polyacrylamide solutions in porous media under various solvent conditions
,”
J. Appl. Polym. Sci.
26
,
3125
3149
(
1981
).
9.
Seright
,
R. S.
,
T.
Fan
,
K.
Wavrik
, and
R. D. C.
Balaban
, “
New insights into polymer rheology in porous media
,”
Soc. Pet. Eng. J.
16
,
35
42
(
2010
).
10.
Sorbie
,
K. S.
,
Polymer-Improved Oil Recovery
, 1st ed. (
Springer Dordrecht
,
Dordrecht
,
2013
).
11.
Clarke
,
A.
,
A. M.
Howe
,
J.
Mitchell
,
J.
Staniland
, and
L. A.
Hawkes
, “
How viscoelastic-polymer flooding enhances displacement efficiency
,”
SPE J.
21
,
0675
0687
(
2016
).
12.
Pogaku
,
R.
,
N. H.
Mohd Fuat
,
S.
Sakar
,
Z. W.
Cha
,
N.
Musa
,
D. N. A.
Awang Tajudin
, and
L. O.
Morris
, “
Polymer flooding and its combinations with other chemical injection methods in enhanced oil recovery
,”
Polym. Bull.
75
,
1753
1774
(
2018
).
13.
Mirzaie Yegane
,
M.
,
P. E.
Boukany
, and
P.
Zitha
, “
Fundamentals and recent progress in the flow of water-soluble polymers in porous media for enhanced oil recovery
,”
Energies
15
,
8575
(
2022
).
14.
Roote
,
D. S.
, Technology status report: In situ flushing, Technical Report TS-98-01, Ground-Water Remediation Technologies Analysis Center, 1998.
15.
Smith
,
M. M.
,
J. A. K.
Silva
,
J.
Munakata-Marr
, and
J. E.
McCray
, “
Compatibility of polymers and chemical oxidants for enhanced groundwater remediation
,”
Environ. Sci. Technol.
42
,
9296
9301
(
2008
).
16.
Huo
,
L.
,
G.
Liu
,
X.
Yang
,
Z.
Ahmad
, and
H.
Zhong
, “
Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures
,”
Chemosphere
252
,
126620
(
2020
).
17.
Hartmann
,
A.
,
S.
Jasechko
,
T.
Gleeson
,
Y.
Wada
,
B.
Andreo
,
J. A.
Barberá
,
H.
Brielmann
,
L.
Bouchaou
,
J.-B.
Charlier
,
W. G.
Darling
,
M.
Filippini
,
J.
Garvelmann
,
N.
Goldscheider
,
M.
Kralik
,
H.
Kunstmann
,
B.
Ladouche
,
J.
Lange
,
G.
Lucianetti
,
J. F.
Martín
,
M.
Mudarra
,
D.
Sánchez
,
C.
Stumpp
,
E.
Zagana
, and
T.
Wagener
, “
Risk of groundwater contamination widely underestimated because of fast flow into aquifers
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2024492118
(
2021
).
18.
Di Dato
,
M.
,
C.
D’Angelo
,
A.
Casasso
, and
A.
Zarlenga
, “
The impact of porous medium heterogeneity on the thermal feedback of open-loop shallow geothermal systems
,”
J. Hydrol.
604
,
127205
(
2022
).
19.
Macosko
,
C. W.
, Rheology: Principles, Measurements, and Applications, Advances in Interfacial Engineering Series (VCH, New York, 1994).
20.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
21.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
22.
Ryder
,
J. F.
, and
J. M.
Yeomans
, “
Shear thinning in dilute polymer solutions
,”
J. Chem. Phys.
125
,
194906
(
2006
).
23.
Larson
,
R. G.
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
24.
McKinley
,
G. H.
,
P.
Pakdel
, and
A.
Öztekin
, “
Rheological and geometric scaling of purely elastic flow instabilities
,”
J. Non-Newton. Fluid Mech.
67
,
19
47
(
1996
).
25.
Pakdel
,
P.
, and
G. H.
McKinley
, “
Elastic instability and curved streamlines
,”
Phys. Rev. Lett.
77
,
2459
2462
(
1996
).
26.
Weissenberg
,
K.
, “
A continuum theory of rheological phenomena
,”
Nature
159
,
310
311
(
1947
).
27.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Kinetic Theory
(
Wiley Interscience
,
Hoboken
,
1987
), Vol. 2.
28.
More
,
R. V.
,
R.
Patterson
,
E.
Pashkovski
, and
G. H.
McKinley
, “
Rod-climbing rheometry revisited
,”
Soft Matter
19
,
4073
4087
(
2023
).
29.
Datta
,
S. S.
,
A. M.
Ardekani
,
P. E.
Arratia
,
A. N.
Beris
,
I.
Bischofberger
,
G. H.
McKinley
,
J. G.
Eggers
,
J. E.
López-Aguilar
,
S. M.
Fielding
,
A.
Frishman
,
M. D.
Graham
,
J. S.
Guasto
,
S. J.
Haward
,
A. Q.
Shen
,
S.
Hormozi
,
A.
Morozov
,
R. J.
Poole
,
V.
Shankar
,
E. S. G.
Shaqfeh
,
H.
Stark
,
V.
Steinberg
,
G.
Subramanian
, and
H. A.
Stone
, “
Perspectives on viscoelastic flow instabilities and elastic turbulence
,”
Phys. Rev. Fluids
7
,
080701
(
2022
).
30.
Pearson
,
J. R. A.
, “
Instability in non-newtonian flow
,”
Annu. Rev. Fluid Mech.
8
,
163
181
(
1976
).
31.
Shaqfeh
,
E. S. G.
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
32.
Groisman
,
A.
, and
V.
Steinberg
, “
Efficient mixing at low Reynolds numbers using polymer additives
,”
Nature
410
,
905
908
(
2001
).
33.
Ducloué
,
L.
,
L.
Casanellas
,
S. J.
Haward
,
R. J.
Poole
,
M. A.
Alves
,
S.
Lerouge
,
A. Q.
Shen
, and
A.
Lindner
, “
Secondary flows of viscoelastic fluids in serpentine microchannels
,”
Microfluid Nanofluid
23
,
33
(
2019
).
34.
Shakeri
,
P.
,
M.
Jung
, and
R.
Seemann
, “
Characterizing purely elastic turbulent flow of a semi-dilute entangled polymer solution in a serpentine channel
,”
Phys. Fluids
34
,
073112
(
2022
).
35.
Batchelor
,
G. K.
, “
The stress generated in a non-dilute suspension of elongated particles by pure straining motion
,”
J. Fluid Mech.
46
,
813
829
(
1971
).
36.
Boger
,
D. V.
, “
Viscoelastic flows through contractions
,”
Annu. Rev. Fluid Mech.
19
,
157
182
(
1987
).
37.
Koelling
,
K. W.
, and
R. K.
Prud’homme
, “
Instabilities in multi-hole converging flow of viscoelastic fluids
,”
Rheol Acta
30
,
511
522
(
1991
).
38.
Byars
,
J. A.
,
A.
Öztekin
,
R. A.
Brown
, and
G. H.
Mckinley
, “
Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks
,”
J. Fluid Mech.
271
,
173
218
(
1994
).
39.
Mongruel
,
A.
, and
M.
Cloitre
, “
Extensional flow of semidilute suspensions of rod-like particles through an orifice
,”
Phys. Fluids
7
,
2546
2552
(
1995
).
40.
Khomami
,
D. B.
, and
L. D.
Moreno
, “
Stability of viscoelastic flow around periodic arrays of cylinders
,”
Rheol. Acta
36
,
367
383
(
1997
).
41.
Arora
,
K.
,
R.
Sureshkumar
, and
B.
Khomami
, “
Experimental investigation of purely elastic instabilities in periodic flows
,”
J. Non-Newton. Fluid Mech.
108
,
209
226
(
2002
).
42.
Mongruel
,
A.
, and
M.
Cloitre
, “
Axisymmetric orifice flow for measuring the elongational viscosity of semi-rigid polymer solutions
,”
J. Non-Newton. Fluid Mech.
110
,
27
43
(
2003
).
43.
Groisman
,
A.
, and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
,
53
55
(
2000
).
44.
Rodd
,
L.
,
J.
Cooper-White
,
D.
Boger
, and
G.
McKinley
, “
Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries
,”
J. Non-Newton. Fluid Mech.
143
,
170
191
(
2007
).
45.
Lanzaro
,
A.
, and
X.-F.
Yuan
, “
Effects of contraction ratio on non-linear dynamics of semi-dilute, highly polydisperse PAAm solutions in microfluidics
,”
J. Non-Newton. Fluid Mech.
166
,
1064
1075
(
2011
).
46.
Kenney
,
S.
,
K.
Poper
,
G.
Chapagain
, and
G. F.
Christopher
, “
Large Deborah number flows around confined microfluidic cylinders
,”
Rheol Acta
52
,
485
497
(
2013
).
47.
Gulati
,
S.
,
S. J.
Muller
, and
D.
Liepmann
, “
Flow of DNA solutions in a microfluidic gradual contraction
,”
Biomicrofluidics
9
,
054102
(
2015
).
48.
Shi
,
X.
, and
G. F.
Christopher
, “
Growth of viscoelastic instabilities around linear cylinder arrays
,”
Phys. Fluids
28
,
124102
(
2016
).
49.
Varshney
,
A.
, and
V.
Steinberg
, “
Elastic wake instabilities in a creeping flow between two obstacles
,”
Phys. Rev. Fluids
2
,
051301(R)
(
2017
).
50.
Qin
,
B.
,
P. F.
Salipante
,
S. D.
Hudson
, and
P. E.
Arratia
, “
Upstream vortex and elastic wave in the viscoelastic flow around a confined cylinder
,”
J. Fluid Mech.
864
,
R2
(
2019
).
51.
Hopkins
,
C. C.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Upstream wall vortices in viscoelastic flow past a cylinder
,”
Soft Matter
18
,
4868
4880
(
2022
).
52.
Sousa
,
P. C.
,
F. T.
Pinho
, and
M. A.
Alves
, “
Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices
,”
Soft Matter
14
,
1344
1354
(
2018
).
53.
Hopkins
,
C. C.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Purely elastic fluid–structure interactions in microfluidics: Implications for mucociliary flows
,”
Small
16
,
e1903872
(
2020
).
54.
Kawale
,
D.
,
E.
Marques
,
P. L. J.
Zitha
,
M. T.
Kreutzer
,
W. R.
Rossen
, and
P. E.
Boukany
, “
Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: Effect of pore-shape and salt
,”
Soft Matter
13
,
765
775
(
2017
).
55.
Kawale
,
D.
,
G.
Bouwman
,
S.
Sachdev
,
P. L. J.
Zitha
,
M. T.
Kreutzer
,
W. R.
Rossen
, and
P. E.
Boukany
, “
Polymer conformation during flow in porous media
,”
Soft Matter
13
,
8745
8755
(
2017
).
56.
Kawale
,
D.
,
J.
Jayaraman
, and
P. E.
Boukany
, “
Microfluidic rectifier for polymer solutions flowing through porous media
,”
Biomicrofluidics
13
,
014111
(
2019
).
57.
Ichikawa
,
Y.
, and
M.
Motosuke
, “
Viscoelastic flow behavior and formation of dead zone around triangle-shaped pillar array in microchannel
,”
Microfluid Nanofluid
26
,
44
(
2022
).
58.
Arratia
,
P. E.
,
C. C.
Thomas
,
J.
Diorio
, and
J. P.
Gollub
, “
Elastic instabilities of polymer solutions in cross-channel flow
,”
Phys. Rev. Lett.
96
,
144502
(
2006
).
59.
Galindo-Rosales
,
F. J.
,
M. S. N.
Oliveira
, and
M. A.
Alves
, “
Optimized cross-slot microdevices for homogeneous extension
,”
RSC Adv.
4
,
7799
7804
(
2014
).
60.
Ribeiro
,
V.
,
P.
Coelho
,
F.
Pinho
, and
M.
Alves
, “
Viscoelastic fluid flow past a confined cylinder: Three-dimensional effects and stability
,”
Chem. Eng. Sci.
111
,
364
380
(
2014
).
61.
Haward
,
S. J.
,
G. H.
McKinley
, and
A. Q.
Shen
, “
Elastic instabilities in planar elongational flow of monodisperse polymer solutions
,”
Sci. Rep.
6
,
33029
(
2016
).
62.
Lanzaro
,
A.
,
D.
Corbett
, and
X.-F.
Yuan
, “
Non-linear dynamics of semi-dilute PAAm solutions in a microfluidic 3D cross-slot flow geometry
,”
J. Non-Newton. Fluid Mech.
242
,
57
65
(
2017
).
63.
Haward
,
S. J.
,
K.
Toda-Peters
, and
A. Q.
Shen
, “
Steady viscoelastic flow around high-aspect-ratio, low-blockage-ratio microfluidic cylinders
,”
J. Non-Newton. Fluid Mech.
254
,
23
35
(
2018
).
64.
Davoodi
,
M.
,
A. F.
Domingues
, and
R. J.
Poole
, “
Control of a purely elastic symmetry-breaking flow instability in cross-slot geometries
,”
J. Fluid Mech.
881
,
1123
1157
(
2019
).
65.
Qin
,
B.
,
R.
Ran
,
P. F.
Salipante
,
S. D.
Hudson
, and
P. E.
Arratia
, “
Three-dimensional structures and symmetry breaking in viscoelastic cross-channel flow
,”
Soft Matter
16
,
6969
6974
(
2020
).
66.
Yokokoji
,
A.
,
S.
Varchanis
,
A. Q.
Shen
, and
S. J.
Haward
, “
Rheological effects on purely-elastic flow asymmetries in the cross-slot geometry
,”
Soft Matter
20
,
152
166
(
2023
).
67.
Kumar
,
M.
,
D. M.
Walkama
,
A. M.
Ardekani
, and
J. S.
Guasto
, “
Stress and stretching regulate dispersion in viscoelastic porous media flows
,”
Soft Matter
19
,
6761
6770
(
2023
).
68.
Groisman
,
A.
, and
V.
Steinberg
, “
Mechanism of elastic instability in Couette flow of polymer solutions: Experiment
,”
Phys. Fluids
10
,
2451
2463
(
1998
).
69.
Pan
,
L.
,
A.
Morozov
,
C.
Wagner
, and
P. E.
Arratia
, “
Nonlinear elastic instability in channel flows at low Reynolds Numbers
,”
Phys. Rev. Lett.
110
,
174502
(
2013
).
70.
Scholz
,
C.
,
F.
Wirner
,
J. R.
Gomez-Solano
, and
C.
Bechinger
, “
Enhanced dispersion by elastic turbulence in porous media
,”
EPL
107
,
54003
(
2014
).
71.
Clarke
,
A.
,
A. M.
Howe
,
J.
Mitchell
,
J.
Staniland
,
L.
Hawkes
, and
K.
Leeper
, “
Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions
,”
Soft Matter
11
,
3536
3541
(
2015
).
72.
Howe
,
A. M.
,
A.
Clarke
, and
D.
Giernalczyk
, “
Flow of concentrated viscoelastic polymer solutions in porous media: Effect of MW and concentration on elastic turbulence onset in various geometries
,”
Soft Matter
11
,
6419
6431
(
2015
).
73.
Lanzaro
,
A.
,
Z.
Li
, and
X.-F.
Yuan
, “
Quantitative characterization of high molecular weight polymer solutions in microfluidic hyperbolic contraction flow
,”
Microfluid Nanofluid
18
,
819
828
(
2015
).
74.
Traore
,
B.
,
C.
Castelain
, and
T.
Burghelea
, “
Efficient heat transfer in a regime of elastic turbulence
,”
J. Non-Newton. Fluid Mech.
223
,
62
76
(
2015
).
75.
Whalley
,
R.
,
W.
Abed
,
D.
Dennis
, and
R.
Poole
, “
Enhancing heat transfer at the micro-scale using elastic turbulence
,”
Theor. App. Mech.
5
,
103
106
(
2015
).
76.
Mitchell
,
J.
,
K.
Lyons
,
A. M.
Howe
, and
A.
Clarke
, “
Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures
,”
Soft Matter
12
,
460
468
(
2016
).
77.
Qin
,
B.
, and
P. E.
Arratia
, “
Characterizing elastic turbulence in channel flows at low Reynolds number
,”
Phys. Rev. Fluids
2
,
083302
(
2017
).
78.
Browne
,
C. A.
, and
S. S.
Datta
, “
Elastic turbulence generates anomalous flow resistance in porous media
,”
Sci. Adv.
7
,
eabj2619
(
2021
).
79.
Shakeri
,
P.
,
M.
Jung
, and
R.
Seemann
, “
Effect of elastic instability on mobilization of capillary entrapments
,”
Phys. Fluids
33
,
113102
(
2021
).
80.
Carlson
,
D. W.
,
K.
Toda-Peters
,
A. Q.
Shen
, and
S. J.
Haward
, “
Volumetric evolution of elastic turbulence in porous media
,”
J. Fluid Mech.
950
,
A36
(
2022
).
81.
Browne
,
C. A.
,
R. B.
Huang
,
C. W.
Zheng
, and
S. S.
Datta
, “
Homogenizing fluid transport in stratified porous media using an elastic flow instability
,”
J. Fluid Mech.
963
,
A30
(
2023
).
82.
Browne
,
C. A.
, and
S. S.
Datta
, “Harnessing elastic instabilities for enhanced mixing and reaction kinetics in porous media,”
Proc. Natl. Acad. Sci. U.S.A.
121
,
e2320962121
(
2024
).
83.
James
,
D. F.
, “
Boger fluids
,”
Annu. Rev. Fluid Mech.
41
,
129
142
(
2009
).
84.
Larson
,
R.
,
S.
Muller
, and
E.
Shaqfeh
, “
The effect of fluid rheology on the elastic Taylor-Couette instability
,”
J. Non-Newton Fluid Mech.
51
,
195
225
(
1994
).
85.
Jagdale
,
P. P.
,
D.
Li
,
X.
Shao
,
J. B.
Bostwick
, and
X.
Xuan
, “
Fluid rheological effects on the flow of polymer solutions in a contraction–expansion microchannel
,”
Micromachines
11
,
278
(
2020
).
86.
Casanellas
,
L.
,
M. A.
Alves
,
R. J.
Poole
,
S.
Lerouge
, and
A.
Lindner
, “
The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows
,”
Soft Matter
12
,
6167
6175
(
2016
).
87.
Cagney
,
N.
,
T.
Lacassagne
, and
S.
Balabani
, “
Taylor-Couette flow of polymer solutions with shear-thinning and viscoelastic rheology
,”
J. Fluid Mech.
905
,
A28
(
2020
).
88.
Lacassagne
,
T.
,
N.
Cagney
, and
S.
Balabani
, “
Shear-thinning mediation of elasto-inertial Taylor-Couette flow
,”
J. Fluid Mech.
915
,
A91
(
2021
).
89.
Browne
,
C. A.
,
A.
Shih
, and
S. S.
Datta
, “
Bistability in the unstable flow of polymer solutions through pore constriction arrays
,”
J. Fluid Mech.
890
,
A2
(
2020
).
90.
Burghelea
,
T.
,
E.
Segre
,
I.
Bar-Joseph
,
A.
Groisman
, and
V.
Steinberg
, “
Chaotic flow and efficient mixing in a microchannel with a polymer solution
,”
Phys. Rev. E
69
,
066305
(
2004
).
91.
Pathak
,
J. A.
,
D.
Ross
, and
K. B.
Migler
, “
Elastic flow instability, curved streamlines, and mixing in microfluidic flows
,”
Phys. Fluids
16
,
4028
4034
(
2004
).
92.
Dobrynin
,
A. V.
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
,
1859
1871
(
1995
).
93.
Tran
,
E.
, and
A.
Clarke
, “
The relaxation time of entangled HPAM solutions in flow
,”
J. Non-Newton. Fluid Mech.
311
,
104954
(
2023
).
94.
Wyatt
,
N. B.
, and
M. W.
Liberatore
, “
Rheology and viscosity scaling of the polyelectrolyte xanthan gum
,”
J. Appl. Polym. Sci.
114
,
4076
4084
(
2009
).
95.
Liu
,
Y.
,
Y.
Jun
, and
V.
Steinberg
, “
Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions
,”
J. Rheol.
53
,
1069
1085
(
2009
).
96.
Haward
,
S. J.
,
C. C.
Hopkins
, and
A. Q.
Shen
, “
Asymmetric flow of polymer solutions around microfluidic cylinders: Interaction between shear-thinning and viscoelasticity
,”
J. Non-Newton. Fluid Mech.
278
,
104250
(
2020
).
97.
Liu
,
Y.
,
Y.
Jun
, and
V.
Steinberg
, “
Longest relaxation times of double-stranded and single-stranded DNA
,”
Macromolecules
40
,
2172
2176
(
2007
).
98.
Shakeri
,
P.
,
M.
Jung
, and
R.
Seemann
, “
Scaling purely elastic instability of strongly shear thinning polymer solutions
,”
Phys. Rev. E
105
,
L052501
(
2022
).
99.
White
,
J. L.
, and
A. B.
Metzner
, “
Development of constitutive equations for polymeric melts and solutions
,”
J. Appl. Polym. Sci.
7
,
1867
1889
(
1963
).
100.
Harnett
,
J. P.
, “Heat transfer to newtonian and non-newtonian fluids in rectangular ducts,” in Advances in Heat Transfer (Academic, Cambridge, 1989), Vol. 19, pp. 247–307.
101.
Dealy
,
J. M.
, “
Weissenberg and Deborah numbers—Their definition and use
,”
Rheol. Bull.
79
,
14
18
(
2010
).
102.
Poole
,
R. J.
, “
The Deborah and Weissenberg numbers
,”
Rheol. Bull.
53
,
32
39
(
2012
).
103.
Joens
,
M. A.
,
P. S.
Doyle
,
G. H.
McKinley
, and
J. W.
Swan
, “
Time-dependent two-dimensional translation of a freely rotating sphere in a viscoelastic fluid
,”
Phys. Fluids
34
,
123110
(
2022
).
104.
Kumar
,
M.
,
S.
Aramideh
,
C. A.
Browne
,
S. S.
Datta
, and
A. M.
Ardekani
, “
Numerical investigation of multistability in the unstable flow of a polymer solution through porous media
,”
Phys. Rev. Fluids
6
,
033304
(
2021
).
105.
Morozov
,
A. N.
, and
W.
Van Saarloos
, “
An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows
,”
Phys. Rep.
447
,
112
143
(
2007
).
106.
Larson
,
R.
, and
P. S.
Desai
, “
Modeling the rheology of polymer melts and solutions
,”
Annu. Rev. Fluid Mech.
47
,
47
65
(
2015
).
107.
De Gennes
,
P. G.
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
108.
Litvinov
,
S.
,
X. Y.
Hu
, and
N. A.
Adams
, “
Numerical simulation of tethered DNA in shear flow
,”
J. Phys.: Condens. Matter
23
,
184118
(
2011
).
109.
Kleßinger
,
U. A.
,
B. K.
Wunderlich
, and
A. R.
Bausch
, “
Transient flow behavior of complex fluids in microfluidic channels
,”
Microfluid. Nanofluid.
15
,
533
540
(
2013
).
110.
Del Giudice
,
F.
,
S. J.
Haward
, and
A. Q.
Shen
, “
Relaxation time of dilute polymer solutions: A microfluidic approach
,”
J. Rheol.
61
,
327
337
(
2017
).
111.
Souliès
,
A.
,
J.
Aubril
,
C.
Castelain
, and
T.
Burghelea
, “
Characterisation of elastic turbulence in a serpentine micro-channel
,”
Phys. Fluids
29
,
083102
(
2017
).
112.
Khalkhal
,
F.
, and
S. J.
Muller
, “
Analyzing flow behavior of shear-thinning fluids in a planar abrupt contraction/expansion microfluidic geometry
,”
Phys. Rev. Fluids
7
,
023303
(
2022
).
113.
McKinley
,
G. H.
, Visco-elasto-capillary thinning and break-up of complex fluids, Technical Report 05-P-04, Massachusetts Institute of Technology, 2005.
114.
Dinic
,
J.
,
L. N.
Jimenez
, and
V.
Sharma
, “
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids
,”
Lab Chip
17
,
460
473
(
2017
).
115.
Haward
,
S. J.
,
M. S. N.
Oliveira
,
M. A.
Alves
, and
G. H.
McKinley
, “
Optimized cross-slot flow geometry for microfluidic extensional rheometry
,”
Phys. Rev. Lett.
109
,
128301
(
2012
).
116.
Haward
,
S. J.
,
S.
Varchanis
,
G. H.
McKinley
,
M. A.
Alves
, and
A. Q.
Shen
, “
Extensional rheometry of mobile fluids. Part II: Comparison between the uniaxial, planar, and biaxial extensional rheology of dilute polymer solutions using numerically optimized stagnation point microfluidic devices
,”
J. Rheol.
67
,
1011
1030
(
2023
).
117.
Haward
,
S. J.
,
F.
Pimenta
,
S.
Varchanis
,
D. W.
Carlson
,
K.
Toda-Peters
,
M. A.
Alves
, and
A. Q.
Shen
, “
Extensional rheometry of mobile fluids. Part I: OUBER, an optimized uniaxial and biaxial extensional rheometer
,”
J. Rheol.
67
,
995
1009
(
2023
).
118.
More
,
R. V.
,
R.
Patterson
,
E.
Pashkovski
, and
G.
McKinley
, “
Elasto-inertial instability in torsional flows of shear-thinning viscoelastic fluids
,”
J. Fluid Mech.
985
,
A37
(
2024
).
119.
Ewoldt
,
R. H.
, and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
441
(
2022
).
120.
Stone
,
H.
,
A.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
121.
Trojanowicz
,
M.
, “
Flow chemistry in contemporary chemical sciences: A real variety of its applications
,”
Molecules
25
,
1434
(
2020
).
122.
Son
,
Y.
, “
Determination of shear viscosity and shear rate from pressure drop and flow rate relationship in a rectangular channel
,”
Polymer
48
,
632
637
(
2007
).
You do not currently have access to this content.