This paper focuses on the origin and implications of particle pressure and discontinuous shear thickening in concentrated suspensions. These properties are both related to the tendency of a flowing suspension to exert normal forces on the confining boundaries, thus providing a conceptual relation of the two seemingly distinct issues through a consideration of the pressure-volume relation of a flowing suspension. An overview of basic elements of suspension mechanics related to these topics is presented, including microstructure and continuum formulations based on single-phase and two-phase perspectives. The historical development of understanding of particle pressure and its influence on particle migration and that of discontinuous shear thickening are described. The mechanistic basis for the particle pressure in terms of suspension microstructure and the role of frictional contact interactions in shear thickening are described. A few open questions related to these topics are presented in conclusion.

1.
Reynolds
,
O.
, “
LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
20
,
469
481
(
1885
).
2.
Freundlich
,
H.
, and
H. L.
Röder
, “
Dilatancy and its relation to thixotropy
,”
Trans. Faraday Soc.
34
,
308
316
(
1938
).
3.
Williamson
,
R.
, and
W.
Heckert
, “
Some properties of dispersions of the quicksand type
,”
Ind. Eng. Chem.
23
,
667
670
(
1931
).
4.
Ballard
,
M.
,
R.
Buscall
, and
F.
Waite
, “
The theory of shear-thickening polymer solutions
,”
Polymer
29
,
1287
1293
(
1988
).
5.
Wolf
,
B.
,
S.
Lam
,
M.
Kirkland
, and
W. J.
Frith
, “
Shear thickening of an emulsion stabilized with hydrophilic silica particles
,”
J. Rheol.
51
,
465
478
(
2007
).
6.
Rosti
,
M. E.
, and
S.
Takagi
, “
Shear-thinning and shear-thickening emulsions in shear flows
,”
Phys. Fluids
33
,
083319
(
2021
).
7.
Russel
,
W. B.
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University
,
New York
,
1995
).
8.
Ferraris
,
C. F.
,
V. A.
Hackley
,
A. I.
Avilés
, and
C.
Buchanan
, Analysis of the ASTM round-robin test on particle size distribution of portland cement: Phase I, National Institute of Standards and Technology Report No. 6883, 2002.
9.
Phung
,
T. N.
,
J. F.
Brady
, and
G.
Bossis
, “
Stokesian dynamics simulation of Brownian suspensions
,”
J. Fluid Mech.
313
,
181
207
(
1996
).
10.
van der Werff
,
J.
, and
C.
De Kruif
, “
Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate
,”
J. Rheol.
33
,
421
454
(
1989
).
11.
Morris
,
J. F.
, “
The lubricated-to-frictional shear thickening scenario in dense suspensions
,”
Phys. Rev. Fluids
3
,
110508
(
2018
).
12.
Hansen
,
J.
, and
I.
McDonald
,
Theory of Simple Liquids
(
Academic
,
New York
,
2006
).
13.
Schweizer
,
K. S.
, and
G.
Yatsenko
, “
Collisions, caging, thermodynamics, and jamming in the barrier hopping theory of glassy hard sphere fluids
,”
J. Chem. Phys.
127
,
164505
(
2007
).
14.
Lionberger
,
R.
, and
W.
Russel
, “
High frequency modulus of hard sphere colloids
,”
J. Rheol.
38
,
1885
1908
(
1994
).
15.
Brady
,
J. F.
, “
The long-time self-diffusivity in concentrated colloidal dispersions
,”
J. Fluid Mech.
272
,
109
134
(
1994
).
16.
Parsi
,
F.
, and
F.
Gadala-Maria
, “
Fore-and-aft asymmetry in a concentrated suspension of solid spheres
,”
J. Rheol.
31
,
725
732
(
1987
).
17.
Blanc
,
F.
,
E.
Lemaire
,
A.
Meunier
, and
F.
Peters
, “
Microstructure in sheared non-Brownian concentrated suspensions
,”
J. Rheol.
57
,
273
292
(
2013
).
18.
Brady
,
J. F.
, and
J. F.
Morris
, “
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion
,”
J. Fluid Mech.
348
,
103
139
(
1997
).
19.
Morris
,
J. F.
, and
B.
Katyal
, “
Microstructure from simulated Brownian suspension flows at large shear rate
,”
Phys. Fluids
14
,
1920
1937
(
2002
).
20.
Fernandez
,
N.
,
R.
Mani
,
D.
Rinaldi
,
D.
Kadau
,
M.
Mosquet
,
H.
Lombois-Burger
,
J.
Cayer-Barrioz
,
H. J.
Herrmann
,
N. D.
Spencer
, and
L.
Isa
, “
Microscopic mechanism for shear thickening of non-Brownian suspensions
,”
Phys. Rev. Lett.
111
,
108301
(
2013
).
21.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
22.
Heussinger
,
C.
, “
Shear thickening in granular suspensions: Inter-particle friction and dynamically correlated clusters
,”
Phys. Rev. E
88
,
050201(R)
(
2013
).
23.
Gopalakrishnan
,
V.
, and
C.
Zukoski
, “
Effect of attractions on shear thickening in dense suspensions
,”
J. Rheol.
48
,
1321
1344
(
2004
).
24.
Pednekar
,
S.
,
J.
Chun
, and
J. F.
Morris
, “
Simulation of shear thickening in attractive colloidal suspensions
,”
Soft Matter
13
,
1773
1779
(
2017
).
25.
Singh
,
A.
,
S.
Pednekar
,
J.
Chun
,
M. M.
Denn
, and
J. F.
Morris
, “
From yielding to shear jamming in a cohesive frictional suspension
,”
Phys. Rev. Lett.
122
,
098004
(
2019
).
26.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
27.
Zarraga
,
I. E.
,
D. A.
Hill
, and
D. T.
Leighton
, “
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids
,”
J. Rheol.
44
,
185
220
(
2000
).
28.
Lobry
,
L.
,
E.
Lemaire
,
F.
Blanc
,
S.
Gallier
, and
F.
Peters
, “
Shear thinning in non-Brownian suspensions explained by variable friction between particles
,”
J. Fluid Mech.
860
,
682
710
(
2019
).
29.
More
,
R. V.
, and
A. M.
Ardekani
, “
Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions
,”
Phys. Rev. E
103
,
062610
(
2021
).
30.
Lemaire
,
E.
,
F.
Blanc
,
C.
Claudet
,
S.
Gallier
,
L.
Lobry
, and
F.
Peters
, “
Rheology of non-Brownian suspensions: A rough contact story
,”
Rheol. Acta
62
,
253
268
(
2023
).
31.
Guazzelli
,
E.
, and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University
,
Cambridge
,
2011
).
32.
Newstein
,
M. C.
,
H.
Wang
,
N. P.
Balsara
,
A. A.
Lefebvre
,
Y.
Shnidman
,
H.
Watanabe
,
K.
Osaki
,
T.
Shikata
,
H.
Niwa
, and
Y.
Morishima
, “
Microstructural changes in a colloidal liquid in the shear thinning and shear thickening regimes
,”
J. Chem. Phys.
111
,
4827
4838
(
1999
).
33.
Gurnon
,
A. K.
, and
N. J.
Wagner
, “
Microstructure and rheology relationships for shear thickening colloidal dispersions
,”
J. Fluid Mech.
769
,
242
276
(
2015
).
34.
Nazockdast
,
E.
, and
J. F.
Morris
, “
Microstructural theory and the rheology of concentrated colloidal suspensions
,”
J. Fluid Mech.
713
,
420
452
(
2012
).
35.
Sierou
,
A.
, and
J. F.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
,
1031
1056
(
2002
).
36.
Otsubo
,
Y.
, “
Effect of surfactant adsorption on the polymer bridging and rheological properties of suspensions
,”
Langmuir
10
,
1018
1022
(
1994
).
37.
Blanco
,
E.
,
D. J.
Hodgson
,
M.
Hermes
,
R.
Besseling
,
G. L.
Hunter
,
P. M.
Chaikin
,
M. E.
Cates
,
I.
Van Damme
, and
W. C.
Poon
, “
Conching chocolate is a prototypical transition from frictionally jammed solid to flowable suspension with maximal solid content
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
10303
10308
(
2019
).
38.
Roussel
,
N.
,
A.
Lemaître
,
R. J.
Flatt
, and
P.
Coussot
, “
Steady state flow of cement suspensions: A micromechanical state of the art
,”
Cem. Concr. Res.
40
,
77
84
(
2010
).
39.
Bossis
,
G.
,
P.
Boustingorry
,
Y.
Grasselli
,
A.
Meunier
,
R.
Morini
,
A.
Zubarev
, and
O.
Volkova
, “
Discontinuous shear thickening in the presence of polymers adsorbed on the surface of calcium carbonate particles
,”
Rheol. Acta
56
,
415
430
(
2017
).
40.
Maranzano
,
B. J.
, and
N. J.
Wagner
, “
The effects of particle size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
41.
Ad Hoc Committee on Official Nomenclature and Symbols
, “
Official symbols and nomenclature of the Society of Rheology
,”
J. Rheol.
57
,
1047
1055
(
2013
).
42.
Morris
,
J.
, and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
Soc. Rheol.
48
,
1213
1237
(
1999
).
43.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
44.
Drew
,
D.
, “
Mathematical modeling of two-phase flow
,”
Annu. Rev. Fluid Mech.
15
,
261
291
(
1983
).
45.
Jackson
,
R.
, “
Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid
,”
Chem. Eng. Sci.
52
,
2457
2469
(
1997
).
46.
Boyer
,
F.
,
Q.
Pouliquen
, and
E.
Guazzelli
, “
Dense suspension in rotating-rod flows: Normal stress and particle migration
,”
J. Fluid Mech.
686
,
5
25
(
2011
).
47.
Xi
,
C.
, and
N. C.
Shapley
, “
Flows of concentrated suspensions through an asymmetric bifurcation
,”
J. Rheol.
52
,
625
647
(
2008
).
48.
Manoorkar
,
S.
,
S.
Krishnan
,
O.
Sedes
,
E.
Shaqfeh
,
G.
Iaccarino
, and
J. F.
Morris
, “
Suspension flow through an asymmetric T-junction
,”
J. Fluid Mech.
844
,
247
273
(
2018
).
49.
Barrat
,
J.-L.
, and
J.-P.
Hansen
,
Basic Concepts for Simple and Complex Liquids
(
Cambridge University
,
Cambridge
,
2003
).
50.
Brady
,
J. F.
, “
Brownian motion, hydrodynamics, and the osmotic pressure
,”
J. Chem. Phys.
98
,
3335
3341
(
1993
).
51.
Yurkovetsky
,
Y.
, and
J. F.
Morris
, “
Particle pressure in sheared Brownian suspensions
,”
J. Rheol.
52
,
141
164
(
2008
).
52.
Jeffrey
,
D. J.
,
J. F.
Morris
, and
J. F.
Brady
, “
The pressure moments for two rigid spheres in low-Reynolds-number flow
,”
Phys. Fluids A
5
,
2317
2325
(
1993
).
53.
Deboeuf
,
A.
,
G.
Gauthier
,
J.
Martin
,
Y.
Yurkovetsky
, and
J. F.
Morris
, “
Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy
,”
Phys. Rev. Lett.
102
,
1
4
(
2009
).
54.
Wallis
,
G. B.
,
One-dimensional Two-phase Flow
(
McGraw-Hill
,
New York
,
1969
).
55.
Leighton
,
D. T.
, and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
56.
Nott
,
P. R.
, and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
57.
Morris
,
J. F.
, and
J.
Brady
, “
Pressure-driven flow of a suspension: Buoyancy effects
,”
Int. J. Multiphase Flow
24
,
105
130
(
1998
).
58.
Miller
,
R. M.
, and
J. F.
Morris
, “
Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions
,”
J. Non-Newtonian Fluid Mech.
135
,
149
165
(
2006
).
59.
Phillips
,
R. J.
,
R. C.
Armstrong
,
R. A.
Brown
,
A. L.
Graham
, and
J. R.
Abbott
, “
A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration
,”
Phys. Fluids A
4
,
30
40
(
1992
).
60.
Jenkins
,
J. T.
, and
D. F.
McTigue
, “Transport processes in concentrated suspensions: The role of particle fluctuations,” in Two Phase Flows and Waves, edited by D. D. Joseph and D. G. Schaeffer (Springer Berlin, New York, 1990).
61.
Frank
,
M.
,
D.
Anderson
,
E. R.
Weeks
, and
J. F.
Morris
, “
Particle migration in pressure-driven flow of a Brownian suspension
,”
J. Fluid Mech.
493
,
363
378
(
2003
).
62.
Vollebregt
,
H.
,
R.
van der Sman
, and
R.
Boom
, “
Suspension flow modelling in particle migration and microfiltration
,”
Soft Matter
6
,
6052
6064
(
2010
).
63.
Deboeuf
,
A.
,
G.
Gauthier
,
J.
Martin
,
Y.
Yurkovetsky
, and
J. F.
Morris
, “
Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy
,”
Phys. Rev. Lett.
102
,
108301
(
2009
).
64.
Garland
,
S.
,
G.
Gauthier
,
J.
Martin
, and
J. F.
Morris
, “
Normal stress measurements in sheared non-Brownian suspensions
,”
J. Rheol.
57
,
71
88
(
2013
).
65.
Etcheverry
,
B.
,
Y.
Forterre
, and
B.
Metzger
, “
Capillary-stress controlled rheometer reveals the dual rheology of shear-thickening suspensions
,”
Phys. Rev. X
13
,
011024
(
2023
).
66.
Williamson
,
R. V.
, and
W. W.
Hecker
, “
Some properties of dispersions of the quicksand type
,”
Ind. Eng. Chem.
23
,
667
670
(
1931
).
67.
Barnes
,
H. A.
, “
Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
68.
Massazza
,
F.
, “
Admixtures in concrete
,”
Adv. Cem. Technol.
1983
,
569
648
(
1983
).
69.
Asaga
,
K.
, and
D. M.
Roy
, “
Rheological properties of cement mixes: IV. Effects of superplasticizers on viscosity and yield stress
,”
Cem. Concr. Res.
10
,
287
295
(
1980
).
70.
Chen
,
L. B.
,
C. F.
Zukoski
, and
B. J.
Ackerson
, “
Rheological consequences of microstructural transitions in colloidal crystals
,”
J. Rheol.
38
,
193
216
(
1994
).
71.
de Gennes
,
P.
, “
Polymers at an interface; A simplified view
,”
Adv. Colloid Interface Sci.
27
,
189
209
(
1987
).
72.
Milner
,
S. T.
,
T. A.
Witten
, and
M. E.
Cates
, “
Theory of the grafted polymer brush
,”
Macromolecules
21
,
2610
2619
(
1988
).
73.
Boersma
,
W. H.
,
J.
Laven
, and
H. N.
Stein
, “
Shear thickening (dilatancy) in concentrated dispersions
,”
AIChE J.
36
,
321
332
(
1990
).
74.
Kaldasch
,
J.
, and
B.
Senge
, “
Shear thickening in polymer stabilized colloidal suspensions
,”
Colloid Polym. Sci.
287
,
1481
1485
(
2009
).
75.
Guy
,
B. M.
,
M.
Hermes
, and
W. C. K.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
,
088304
(
2015
).
76.
Kim
,
H.
,
M.
van der Naald
,
F. A.
Braaten
,
T. A.
Witten
,
S. J.
Rowan
, and
H. M.
Jaeger
, “
Shear thickening in suspensions of particles with dynamic brush layers
,”
Soft Matter
20
,
6384
6389
(
2024
).
77.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
78.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
79.
Comtet
,
J.
,
G.
Chatté
,
A.
Niguès
,
L.
Bocquet
,
A.
Siria
, and
A.
Colin
, “
Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions
,”
Nat. Commun.
8
,
15633
(
2017
).
80.
Catherall
,
A. A.
,
J. R.
Melrose
, and
R. C.
Ball
, “
Shear thickening and order–disorder effects in concentrated colloids at high shear rates
,”
J. Rheol.
44
,
1
25
(
2000
).
81.
Jamali
,
S.
, and
J. F.
Brady
, “
Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics
,”
Phys. Rev. Lett.
123
,
138002
(
2019
).
82.
Melrose
,
J. R.
, and
R. C.
Ball
, “
The pathological behaviour of sheared hard spheres with hydrodynamic interactions
,”
Europhys. Lett.
32
,
535
540
(
1995
).
83.
Ball
,
R. C.
, and
J. R.
Melrose
, “
Lubrication breakdown in hydrodynamic simulations of concentrated colloids
,”
Adv. Colloid Interface Sci.
59
,
19
30
(
1995
).
84.
Lootens
,
D.
,
H.
Van Damme
, and
P.
Hébraud
, “
Giant stress fluctuations at the jamming transition
,”
Phys. Rev. Lett.
90
,
178301
(
2003
).
85.
Boersma
,
W. H.
,
P. J. M.
Baets
,
J.
Laven
, and
H. N.
Stein
, “
Time-dependent behavior and wall slip in concentrated shear thickening dispersions
,”
J. Rheol.
35
,
1093
1120
(
1991
).
86.
Lootens
,
D.
,
H.
van Damme
,
Y.
Hémar
, and
P.
Hébraud
, “
Dilatant flow of concentrated suspensions of rough particles
,”
Phys. Rev. Lett.
95
,
268302
(
2005
).
87.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
,
188301
(
2016
).
88.
Seto
,
R.
, and
G. G.
Giusteri
, “
Normal stress differences in dense suspensions
,”
J. Fluid Mech.
857
,
200
215
(
2018
).
89.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
90.
Huang
,
N.
,
G.
Ovarlez
,
F.
Bertrand
,
S.
Rodts
,
P.
Coussot
, and
D.
Bonn
, “
Flow of wet granular materials
,”
Phys. Rev. Lett.
94
,
028301
(
2005
).
91.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
15326
15330
(
2015
).
92.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
Z.
Hanjun
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
Generality of shear thickening in dense suspensions
,”
Nat. Mater.
9
,
220
224
(
2010
).
93.
Hsiao
,
L. C.
,
S.
Jamali
,
E.
Glynos
,
P. F.
Green
,
R. G.
Larson
, and
M. J.
Solomon
, “
Rheological state diagrams for rough colloids in shear flow
,”
Phys. Rev. Lett.
119
,
158001
(
2017
).
94.
Hsu
,
C.-P.
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
5117
5122
(
2018
).
95.
D’Haene
,
P.
,
J.
Mewis
, and
G. G.
Fuller
, “
Scattering dichroism measurements of flow-induced structure of a shear thickening suspension
,”
J. Colloid Interface Sci.
156
,
350
358
(
1993
).
96.
Wang
,
M.
,
S.
Jamali
, and
J. F.
Brady
, “
A hydrodynamic model for discontinuous shear-thickening in dense suspensions
,”
J. Rheol.
64
,
379
394
(
2020
).
97.
Gameiro
,
M.
,
A.
Singh
,
L.
Kondic
,
K.
Mischaikow
, and
J. F.
Morris
, “
Interaction network analysis in shear thickening suspensions
,”
Phys. Rev. Fluids
5
,
034307
(
2020
).
98.
Sedes
,
O.
,
H. A.
Makse
,
B.
Chakraborty
, and
J. F.
Morris
, “
K-core analysis of shear-thickening suspensions
,”
Phys. Rev. Fluids
7
,
024304
(
2022
).
99.
Goyal
,
A.
,
N. S.
Martys
, and
E.
Del Gado
, “
Flow induced rigidity percolation in shear thickening suspensions
,”
J. Rheol.
68
,
219
228
(
2024
).
100.
Bashkirtseva
,
I.
,
A. Y.
Zubarev
,
L. Y.
Iskakova
, and
L.
Ryashko
, “
On rheophysics of high-concentrated suspensions
,”
Colloid J.
71
,
446
454
(
2009
).
101.
Pednekar
,
S.
,
J.
Chun
, and
J. F.
Morris
, “
Bidisperse and polydisperse suspension rheology at large solid fraction
,”
J. Rheol.
62
,
513
526
(
2018
).
102.
Malbranche
,
N.
,
B.
Chakraborty
, and
J. F.
Morris
, “
Shear thickening in dense bidisperse suspensions
,”
J. Rheol.
67
,
91
104
(
2023
).
103.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
104.
Sedes
,
O.
,
A.
Singh
, and
J. F.
Morris
, “
Fluctuations at the onset of discontinuous shear thickening in a suspension
,”
J. Rheol.
64
,
309
319
(
2020
).
105.
Vowinckel
,
B.
, “
Incorporating grain-scale processes in macroscopic sediment transport models: A review and perspectives for environmental and geophysical applications
,”
Acta Mech.
232
,
2023
2050
(
2021
).
106.
Wang
,
L.
,
Z.
Du
,
W.
Fu
, and
P.
Wang
, “
Study of mechanical property of shear thickening fluid (STF) for soft body-armor
,”
Mater. Res. Express
8
,
045021
(
2021
).
107.
Corder
,
R. D.
,
Y.-J.
Chen
,
P.
Pibulchinda
,
J. P.
Youngblood
,
A. M.
Ardekani
, and
K. A.
Erk
, “
Rheology of 3D printable ceramic suspensions: Effects of non-adsorbing polymer on discontinuous shear thickening
,”
Soft Matter
19
,
882
891
(
2023
).
108.
van der Sman
,
R.
, and
H.
Vollebregt
, “
Effective temperature for sheared suspensions: A route towards closures for migration in bidisperse suspension
,”
Adv. Colloid Interface Sci.
185
,
1
13
(
2012
).
109.
Guy
,
B. M.
,
J. A.
Richards
,
D. J. M.
Hodgson
,
E.
Blanco
, and
W. C. K.
Poon
, “
Constraint-based approach to granular dispersion rheology
,”
Phys. Rev. Lett.
121
,
128001
(
2018
).
110.
Rathee
,
V.
,
D. L.
Blair
, and
J. S.
Urbach
, “
Localized transient jamming in discontinuous shear thickening
,”
J. Rheol.
64
,
299
308
(
2020
).
111.
Rathee
,
V.
,
J.
Miller
,
D. L.
Blair
, and
J. S.
Urbach
, “
Structure of propagating high-stress fronts in a shear-thickening suspension
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2203795119
(
2022
).
You do not currently have access to this content.