The stable shapes and structure formation in prestretched threads of a weak soft polymer gel with permanent cross-links under the action of capillary forces are studied theoretically here. Two cases are considered: when the thread is formed from a drop of gel located between the surfaces after they are moved apart and when it is fixed at the ends. In the first case, we identified three stages of the thread relaxation, characterized by highly different times and associated with the formation of the filament, its lateral compression accompanied by the release of solvent at its surface, and diffusion of the solvent to the terminal droplets. A general linear stability analysis is carried out for threads of any diameter and degree of prestretch, taking into account the effects of elasticity, interactions and inertia, and the corresponding dispersion relations are obtained. The thermodynamically stable beads-on-a-string structures are studied as well and a diagram of the state of the gel thread is presented. It reveals several regimes of different internal structures of gel threads along with phase transitions between them.

1.
Eggers
,
J.
, and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
2.
Goldin
,
M.
,
J.
Yerushalmi
,
R.
Pfeffer
, and
R.
Shinnar
, “
Breakup of laminar capillary jet of a viscoelastic fluid
,”
J. Fluid Mech.
38
,
689
711
(
1969
).
3.
Bazilevskii
,
A. V.
,
S. I.
Voronkov
,
V. M.
Entov
, and
A. N.
Rozhkov
, “
Orientation effects in the breakup of jets and threads of dilute polymer solutions
,”
Sov. Phys.-Dokl.
26
,
333
336
(
1981
).
4.
McKinley
,
G. H.
, “
Visco-elasto-capillary thinning and break-up of complex fluids
,” in
Rheological Review
(
The British Society of Rheology
,
Aberystwyth
,
2005
), pp.
1
48
.
5.
Oliveira
,
M. S. N.
, and
G. H.
McKinley
, “
Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers
,”
Phys. Fluids
17
,
071704
(
2005
).
6.
Oliveira
,
M. S. N.
,
R.
Yeh
, and
G. H.
McKinley
, “
Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solution
,”
J. Non-Newtonian Fluid Mech.
137
,
137
148
(
2006
).
7.
Sattler
,
R.
,
C.
Wagner
, and
J.
Eggers
, “
Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions
,”
Phys. Rev. Lett.
100
,
164502
(
2008
).
8.
Bazilevskii
,
A. V.
, and
A. N.
Rozhkov
, “
Dynamics of the capillary breakup of a bridge in an elastic fluid
,”
Fluid Dyn.
50
,
800
811
(
2015
).
9.
Deblais
,
A.
,
K. P.
Velikov
, and
D.
Bonn
, “
Pearling instabilities of a viscoelastic thread
,”
Phys. Rev. Lett.
120
,
194501
(
2018
).
10.
Sattler
,
R.
,
S.
Gier
,
J.
Eggers
, and
C.
Wagner
, “
The final stages of capillary break-up of polymer solutions
,”
Phys. Fluids
24
,
023101
(
2012
).
11.
Kuzin
,
M. S.
,
I. Y.
Skvortsov
,
P. S.
Gerasimenko
,
A. V.
Subbotin
, and
A. Y.
Malkin
, “
The role of the solvent nature in stretching polymer solutions (polyacrylonitrile spinning using different solvents)
,”
J. Mol. Liquids
392
,
123516
(
2023
).
12.
Kibbelaar
,
H. V. M.
,
A.
Deblais
,
F.
Burla
,
G. H.
Koenderink
,
K. P.
Velikov
, and
D.
Bonn
, “
Capillary thinning of elastic and viscoelastic threads: From elastocapillarity to phase separation
,”
Phys. Rev. Fluids
5
,
092001(R)
(
2020
).
13.
McKinley
,
G. H.
, and
A.
Tripathi
, “
How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer
,”
J. Rheol.
44
,
653
670
(
2000
).
14.
Anna
,
S. L.
, and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
138
(
2001
).
15.
Stelter
,
M.
,
G.
Brenn
,
A. L.
Yarin
,
R. P.
Singh
, and
F.
Durst
, “
Validation and application of a novel elongational device for polymer solutions
,”
J. Rheol.
44
,
595
616
(
2000
).
16.
Stelter
,
M.
,
G.
Brenn
,
A. L.
Yarin
,
R. P.
Singh
, and
F.
Durst
, “
Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer
,”
J. Rheol.
46
,
507
527
(
2002
).
17.
Bazilevskii
,
A. B.
, and
A. N.
Rozhkov
, “
Dynamics of capillary breakup of elastic jets
,”
Fluid Dyn.
49
,
827
843
(
2014
).
18.
Dinic
,
J.
,
Y.
Zhang
,
L. N.
Jimenez
, and
V.
Sharma
, “
Extensional relaxation time of dilute, aqueous, polymer solutions
,”
ACS Macro Lett.
4
,
804
808
(
2015
).
19.
Malkin
,
A. Y.
,
A. V.
Semakov
,
I. Y.
Skvortsov
,
P.
Zatonskikh
,
V. G.
Kulichikhin
,
A. V.
Subbotin
, and
A. N.
Semenov
, “
Spinnability of dilute polymer solutions
,”
Macromolecules
50
,
8231
8244
(
2017
).
20.
Dinic
,
J.
, and
V.
Sharma
, “
Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions
,”
Proc. Natl. Acad. Sci.
116
,
8766
8774
(
2019
).
21.
Christanti
,
Y.
, and
L. M.
Walker
, “
Surface tension driven jet break up of strain-hardening polymer solutions
,”
J. Non-Newtonian Fluid Mech.
100
,
9
26
(
2001
).
22.
Arnolds
,
O.
,
H.
Buggisch
,
D.
Sachsenheimer
, and
N.
Willenbacher
, “
Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions
,”
Rheol Acta.
49
,
1207
1217
(
2010
).
23.
Entov
,
V. M.
, “
Elastic effects in flows of dilute polymer solutions
,” in
Progress and Trends in Rheology II
, edited by
H.
Giesekus
and
M. F.
Hibberd
(
Springer
,
Berlin
,
1988
), pp.
260
261
.
24.
Yarin
,
A. L.
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Wiley
,
New York
,
1993
).
25.
Entov
,
V. M.
, and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
,
31
53
(
1997
).
26.
Chang
,
H.-C.
,
E. A.
Demekhin
, and
E.
Kalaidin
, “
Iterated stretching of viscoelastic jets
,”
Phys. Fluids
11
,
1717
1737
(
1999
).
27.
Li
,
J.
, and
M. A.
Fontelos
, “
Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study
,”
Phys. Fluids
15
,
922
937
(
2003
).
28.
Clasen
,
C.
,
J.
Eggers
,
M. A.
Fontelos
,
J.
Li
, and
G. H.
McKinley
, “
The beads-on-string structure of viscoelastic threads
,”
J. Fluid Mech.
556
,
283
308
(
2006
).
29.
Deblais
,
A.
,
M. A.
Herrada
,
J.
Eggers
, and
D.
Bonn
, “
Self-similarity in the breakup of very dilute viscoelastic solutions
,”
J. Fluid Mech.
904
,
R2
(
2020
).
30.
Eggers
,
J.
,
M. A.
Herrada
, and
J. H.
Snoeijer
, “
Self-similar breakup of polymeric threads as described by the Oldroyd-B model
,”
J. Fluid Mech.
887
,
A19
(
2020
).
31.
Semenov
,
A.
, and
I.
Nyrkova
, “
Capillary thinning of viscoelastic threads of unentangled polymer solutions
,”
Polymers
14
,
4420
(
2022
).
32.
Subbotin
,
A. V.
, and
A. N.
Semenov
, “
Dynamics of dilute polymer solutions at the final stages of capillary thinning
,”
Macromolecules
55
,
2096
2108
(
2022
).
33.
Subbotin
,
A. V.
,
I. A.
Nyrkova
, and
A. N.
Semenov
, “
The rheological behavior of polymer solution threads
,”
Polym. Sci., Ser. C
65
,
11
26
(
2023
).
34.
Bazilevsky
,
A. V.
,
V. M.
Entov
, and
A. N.
Rozhkov
, “
Liquid filament microrheometer and some of Its applications
,” in
Third European Rheology Conference and Golden Jubilee Meeting of the British Society of Rheology
, edited by
D. R.
Oliver
(
Springer
,
NetherlandsDordrecht
,
1990
), pp.
41
43
.
35.
Bazilevskii
,
A. V.
,
V. M.
Entov
, and
A. N.
Rozhkov
, “
Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions
,”
Polym. Sci., Ser. A
43
,
716
726
(
2001
).
36.
Dinic
,
J.
,
L. N.
Jimenez
, and
V.
Sharma
, “
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids
,”
Lab Chip.
17
,
460
473
(
2017
).
37.
Keshavarz
,
B.
,
V.
Sharma
,
E. C.
Houze
,
M. R.
Koerner
,
J. R.
Moore
,
P. M.
Cotts
,
P.
Threlfall-Holmes
, and
G. H.
McKinley
, “
Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge jetting extensional rheometry (ROJER)
,”
J. Non-Newtonian Fluid Mech.
222
,
171
189
(
2015
).
38.
Keshavarz
,
B.
,
E. C.
Houze
,
J. R.
Moore
,
M. R.
Koerner
, and
G. H.
McKinley
, “
Rotary atomization of Newtonian and viscoelastic liquids
,”
Phys. Rev. Fluids
5
,
033601
(
2020
).
39.
Tirtaatmadja
,
V.
,
G. H.
McKinley
, and
J. J.
Cooper-White
, “
Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration
,”
Phys. Fluids
18
,
043101
(
2006
).
40.
Sur
,
S.
, and
J.
Rothstein
, “
Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity
,”
J. Rheol.
62
,
1245
1259
(
2018
).
41.
Clasen
,
C.
,
J. P.
Plog
,
W.-M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L. E.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
,”
J. Rheol.
50
,
849
881
(
2006
).
42.
Wagner
,
C. E.
, and
G. H.
McKinley
, “
Age-dependent capillary thinning dynamics of physically-associated salivary mucin networks
,”
J. Rheol.
61
,
1309
1326
(
2017
).
43.
Bhat
,
P. P.
,
S.
Appathurai
,
M. T.
Harris
,
M.
Pasquali
,
G. H.
McKinley
, and
O. A.
Basaran
, “
Formation of beads-on-a-string structures during break-up of viscoelastic filaments
,”
Nat. Phys.
6
,
625
631
(
2010
).
44.
Turkoz
,
E.
,
J. M.
Lopez-Herrera
,
J.
Eggers
,
C. B.
Arnold
, and
L.
Deike
, “
Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model
,”
J. Fluid Mech.
851
,
R2
(
2018
).
45.
Subbotin
,
A. V.
, and
A. N.
Semenov
, “
Blistering instability during capillary thinning of solutions of homo- and associative polymers
,”
J. Rheol.
67
,
1091
1106
(
2023
).
46.
Subbotin
,
A. V.
, and
A. N.
Semenov
, “
Dynamics of annular solvent droplets under capillary thinning of non-entangled polymer solutions
,”
J. Rheol.
67
,
53
65
(
2023
).
47.
Markin
,
V. S.
,
D. L.
Tanelian
,
R. A.
Jersild
, Jr.
, and
S.
Ochs
, “
Biomechanics of stretch-induced beading
,”
Biophys. J.
76
,
2852
2860
(
1999
).
48.
Barrière
,
B.
,
K.
Sekimoto
, and
L.
Leibler
, “
Peristaltic instability of cylindrical gels
,”
J. Chem. Phys.
105
,
1735
1738
(
1996
).
49.
Snoeijer
,
J. H.
,
A.
Pandey
,
M. A.
Herrada
, and
J.
Eggers
, “
The relationship between viscoelasticity and elasticity
,”
Proc. R. Soc. A
476
,
20200419
(
2020
).
50.
Mora
,
S.
,
T.
Phou
,
J. M.
Fromental
,
L. M.
Pismen
, and
Y.
Pomeau
, “
Capillarity driven instability of a soft solid
,”
Phys. Rev. Lett.
105
,
214301
(
2010
).
51.
Taffetani
,
M.
, and
P.
Ciarletta
, “
Elastocapillarity can control the formation and the morphology of beads-on-string structures in solid fibers
,”
Phys. Rev. E
91
,
032413
(
2015
).
52.
Fu
,
Y.
,
L.
Jin
, and
A.
Goriely
, “
Necking, beading, and bulging in soft elastic cylinders
,”
J. Mech. Phys. Solids
147
,
104250
(
2021
).
53.
Giudici
,
A.
, and
J. S.
Biggins
, “
Ballooning, bulging, and necking: An exact solution for longitudinal phase separation in elastic systems near a critical point
,”
Phys. Rev. E
102
,
033007
(
2020
).
54.
Xuan
,
C.
, and
J.
Biggins
, “
Plateau-Rayleigh instability in solids is a simple phase separation
,”
Phys. Rev. E
95
,
053106
(
2017
).
55.
Lestringant
,
C.
, and
B.
Audoly
, “
A one-dimensional model for elasto-capillary necking
,”
Proc. R. Soc. A
476
,
20200337
(
2020
).
56.
Pandey
,
A.
,
M.
Kansal
,
M. A.
Herrada
,
J.
Eggers
, and
J. H.
Snoeijer
, “
Elastic Rayleigh–plateau instability: Dynamical selection of nonlinear states
,”
Soft Matter
17
,
5148
5161
(
2021
).
57.
Fong
,
H.
,
I.
Chun
, and
D. H.
Reneker
, “
Beaded nanofibers formed during electrospinning
,”
Polymer
40
,
4585
4592
(
1999
).
58.
Yu
,
J. H.
,
S. V.
Fridrikh
, and
G. C.
Rutledge
, “
The role of elasticity in the formation of electrospun fibers
,”
Polymer
47
,
4789
4797
(
2006
).
59.
Helgeson
,
M. E.
,
K. N.
Grammatikos
,
J. M.
Deitzel
, and
N. J.
Wagner
, “
Theory and kinematic measurements of the mechanics of stable electrospun polymer jets
,”
Polymer
49
,
2924
2936
(
2008
).
60.
Carroll
,
C. P.
, and
Y. L.
Joo
, “
Axisymmetric instabilities of electrically driven viscoelastic jets
,”
J. Non-Newtonian Fluid Mech.
153
,
130
148
(
2008
).
61.
Wang
,
C.
,
T.
Hashimoto
,
Y.
Wang
,
H.-Y.
Lai
, and
C.-H.
Kuo
, “
Self-organization in electrospun polymer solutions: From dissipative structures to ordered fiber structures through fluctuations
,”
Macromolecules
51
,
4502
4515
(
2018
).
62.
Subbotin
,
A. V.
, “
Features of the behavior of a polymer solution jet in electrospinning
,”
Polym. Sci., Ser. A
63
,
172
179
(
2021
).
63.
Skvortsov
,
I. Y.
,
M. S.
Kuzin
,
P. S.
Gerasimenko
,
T. D.
Patsaev
,
A. V.
Subbotin
, and
V. G.
Kulichikhin
, “
Behavior of a stationary jet of concentrated polyacrylonitrile solution
,”
Phys. Fluids
36
,
083117
(
2024
).
64.
Khokhlov
,
A. R.
, “
Concept of quasimonomers and its application to some problems of polymer statistics
,”
Polymer
19
,
1387
1396
(
1978
).
65.
Lifshits
,
I. M.
,
A. Y.
Grosberg
, and
A. R.
Khokhlov
, “
Some problems of the statistical physics of polymer chains with volume interaction
,”
Rev. Mod. Phys.
50
,
683
713
(
1978
).
66.
Lifshits
,
I. M.
,
A. Y.
Grosberg
, and
A. R.
Khokhlov
, “
Volume interactions in the statistical physics of a polymer macromolecule
,”
Sov. Phys. Usp.
22
,
123
142
(
1979
).
67.
Schaefer
,
D.
,
J.-F.
Joanny
, and
P.
Pincus
, “
Dynamics of semiflexible polymers in solution
,”
Macromolecules
13
,
1280
1289
(
1980
).
68.
Peng
,
Y.-H.
,
S.-K.
Hsiao
,
K.
Gupta
,
S.
Ruland
,
G. K.
Auernhammer
,
M. F.
Maitz
,
S.
Boye
,
J.
Lattner
,
C.
Gerri
,
A.
Honigmann
,
C.
Werner
, and
E.
Krieg
, “
Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture
,”
Nat. Nanotechnol.
18
,
1463
1473
(
2023
).
69.
Semenov
,
A. N.
, and
I. A.
Nyrkova
, “
Adsorption of semiflexible wormlike polymers to a bar and their double-chain complex formation
,”
Soft Matter
20
,
4366
4388
(
2024
).
70.
Kamiyama
,
Y.
,
R.
Tamate
,
T.
Hiroi
,
S.
Samitsu
,
K.
Fujii
, and
T.
Ueki
, “
Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh-molecular weight polymers
,”
Sci. Adv.
8
,
eadd0226
(
2022
).
71.
Flory
,
P. J.
,
Principles of Polymer Chemistry
(
Cornell University
,
Ithaca, NY
,
1971
).
You do not currently have access to this content.