In a capillary tube flow, if the wall shear stress τw and apparent shear rate 4V/R are given, the viscosity reduces to the viscosity τw/(4V/R) at a dimensionless intermediate radius ra* (≡ra/R) of approximately 0.8, where the shear rate is ra* × 4V/R. This known result is extended to the quasi-steady gravity-driven flow in a capillary tube, where the fluid head decreases from Hmax to H over a period of T seconds. Using a Carreau and power-law model, the intermediate viscosity for a gravity-driven flow is derived for the logarithmic middle fluid head between Hmax and H. This intermediate viscosity and its shear rate can be obtained from a single measurement of T using a flow setup like an Ubbelohde viscometer. The experimental results validate the proposed method and show its potential for an easy and inexpensive viscometry oriented toward practical applications, like the viscosity measurement of a liquid diet for dysphagia.

1.
Metzner
,
A. B.
, and
R. E.
Otto
, “
Agitation of non-Newtonian fluids
,”
AIChE J.
3
(
1
),
3
10
(
1957
).
2.
Wood
,
F. W.
, “Psychophysical studies on the consistency of liquid foods,” Rheology and Texture of Foodstuffs, SCI Monograph 27 (Society of Chemical Industry, London, 1968), pp. 40–49.
3.
Shama
,
F.
, and
P.
Sherman
, “
Identification of the stimuli controlling the sensory evaluation of viscosity, I. Oral methods
,”
J. Texture Stud.
4
,
111
118
(
1973
).
4.
National Dysphagia Diet Task Force
,
National Dysphagia Diet. Standardization for Optimal Care
(
American Dietetic Association
,
Chicago, IL
,
2002
).
5.
Zhu
,
J. F.
,
H.
Mizunuma
, and
Y.
Michiwaki
, “
Determination of characteristic shear rate of a liquid bolus through the pharynx during swallowing
,”
J. Texture Stud.
45
,
430
439
(
2014
).
6.
Hanson
,
B.
,
R.
Jamshidi
,
A.
Redfearn
,
R.
Begley
, and
C.
Steele
, “
Experimental and computational investigation of the IDDSI flow test of liquids used in dysphagia management
,”
Ann. Biomed. Eng.
47
(
11
),
2296
2307
(
2019
).
7.
Mizunuma
,
H.
,
M.
Sonomura
, and
K.
Shimokasa
, “
Numerical simulation of pharyngeal bolus flow influenced by bolus viscosity and apparent slip
,”
J. Texture Stud.
51
(
5
),
742
754
(
2020
).
8.
Steele
,
C. M.
,
D. F.
James
,
S.
Hori
,
R. C.
Polacco
, and
C.
Yee
, “
Oral perceptual discrimination of viscosity differences for non-Newtonian liquids in the nectar- and honey-thick ranges
,”
Dysphagia
29
,
355
364
(
2014
).
9.
Steele
,
C. M.
,
W. A.
Alsanei
,
S.
Ayanikalath
,
C. E. A.
Barbon
,
J.
Chen
,
J. A. Y.
Cichero
,
K.
Coutts
,
R. O.
Dantas
,
J.
Duivestein
,
L.
Giosa
,
B.
Hanson
,
P.
Lam
,
C.
Lecko
,
C.
Leigh
,
A.
Nagy
,
A. M.
Namasivayam
,
W. V.
Nascimento
,
I.
Odendaal
,
C. H.
Smith
, and
H.
Wang
, “
The influence of food texture and liquid consistency modification on swallowing physiology and function: A systematic review
,”
Dysphagia
30
,
2
26
(
2015
).
10.
Schümmer
,
P.
, “
Zur Darstellung der Durchflußcharakteristik, viskoelastischer Flüssigkeiten in Rohrleitungen
,”
Chem. Ing. Tech.
42
(
19
),
1239
(
1970
).
11.
Giesekus
,
H.
, and
G.
Langer
, “
Die Bestimmung der wahren Fließkurven nicht-newtonscher Flüssigkeiten und plastischer Stoffe mit der Methode der repräsentativen Viskosität
,”
Rheol. Acta
16
(
1
),
1
22
(
1977
).
12.
Laun
,
H. M.
, “
Polymer melt rheology with a slit die
,”
Rheol. Acta
22
(
2
),
171
185
(
1983
).
13.
Brunn
,
P. O.
, and
J.
Vorwerk
, “
Determination of the steady-state shear viscosity from measurements of the apparent viscosity for some common types of viscometers
,”
Rheol. Acta
32
(
4
),
380
397
(
1993
).
14.
Glass capillary kinematic viscometers, ISO 3105 (1994).
15.
Standard specifications and operating instructions for glass capillary kinematic viscometers, ASTM D446-12 (2017).
16.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymer Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
1
.
17.
Memon
,
K. N.
,
S. F.
Shah
, and
A. M.
Siddiqui
, “
Exact solution of unsteady tank drainage for ellis fluid
,”
J. Appl. Fluid Mech.
11
(
6
),
1629
1636
(
2018
).
18.
Berli
,
C. L. A.
, and
J. A.
Deiber
, “
Theoretical analysis of the gravity-driven capillary viscometers
,”
Rev. Sci. Instrum.
75
(
4
),
976
982
(
2004
).
19.
Boger
,
D. V.
, “
Viscoelastic flows through contraction
,”
Ann. Rev. Fluid Mech.
19
,
157
182
(
1987
).
20.
Kim-e
,
M. E.
,
R. A.
Brown
, and
R. C.
Armstrong
, “
The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction
,”
J. Non-Newtonian Fluid Mech.
13
,
341
363
(
1983
).
21.
Vrentas
,
J. S.
,
J. L.
Duda
, and
S.-A.
Hong
, “
Excess pressure drops in entrance flows
,”
J. Rheol.
26
(
4
),
347
357
(
1982
).
22.
Collins
,
M.
, and
W. R.
Schowalter
, “
Behavior of non-Newtonian fluids in the entry region of a pipe
,”
AIChE J.
9
(
6
),
804
809
(
1963
).
23.
Choplin
,
L.
, and
P. J.
Carreau
, “
Excess pressure losses in a slit
,”
J. Non-Newtonian Fluid Mech.
9
,
119
146
(
1981
).
24.
Shimokasa
,
K.
,
H.
Mizunuma
, and
N.
Sekine
, “
Determination of xanthan gum-based thickener concentration for videofluoroscopic contrast media
,”
Nihon Reoroji Gakkaishi
51
(
2
),
85
96
(
2023
).
You do not currently have access to this content.