As representatives of fluid foods containing millimeter-sized ingredients, three kinds of rice porridge are examined by velocity-profiling-assisted rheometry (VPAR). The obtained flow curves of the plain, egg, and bean porridge are well characterized by the power-law model, where the plain porridge has the highest consistency, the bean porridge is the second, and the egg porridge has the lowest viscosity. These are also time dependent properties; the consistency and the degree of shear-thinning decrease as the measurement repetition proceeds. With these rheology data, spreading and descending behaviors, which are fundamental and important flows in the eating and swallowing process, are discussed. Spreading behavior in the conventional line spread test and descending behavior in a simplified artificial throat model are predicted based on the rheological data identified by VPAR and simple physical models. The spreading behavior is validly described by the consistency, and the descending velocity is evaluated to have high correlation with the representative shear rate predicted. Through the rheological measurement and its application to rationalize the flow behaviors, VPAR is expected to be a practical tool in both rheology and fluid mechanics of complex fluid foods.

1.
Ueda
,
A.
, and
K.
Nohara
, “
Criteria for diagnosing aspiration pneumonia in Japan—A scoping review
,”
Respir. Investig.
62
,
128
136
(
2024
).
2.
Shama
,
F.
, and
P.
Sherman
, “
Identification of stimuli controlling the sensory evaluation of viscosity II. Oral methods
,”
J. Texture Stud.
4
,
111
118
(
1973
).
3.
Houska
,
M.
,
H.
Valentova
,
P.
Novotna
,
J.
Strohalm
,
J.
Sestak
, and
J.
Pokorny
, “
Shear rates during oral and nonoral perception of viscosity of fluid foods
,”
J. Texture Stud.
29
,
603
615
(
1998
).
4.
Nakauma
,
M.
,
S.
Ishihara
,
T.
Funami
, and
K.
Nishinari
, “
Swallowing profiles of food polysaccharide solutions with different flow behaviors
,”
Food Hydrocoll.
25
,
1165
1173
(
2011
).
5.
Takahashi
,
T.
,
T.
Nitou
,
N.
Tayama
,
A.
Kawano
, and
H.
Ogoshi
, “
Effects of physical properties and oral perception on transit speed and passing time of semiliquid foods from the mid-pharynx to the hypopharynx
,”
J. Texture Stud.
33
,
585
598
(
2002
).
6.
Zhu
,
J.
,
H.
Mizunuma
, and
Y.
Michiwaki
, “
Determination of characteristic shear rate of a liquid bolus through the pharynx during swallowing
,”
J. Texture Stud.
45
,
430
439
(
2014
).
7.
Qazi
,
W. M.
,
O.
Ekberg
,
J.
Wiklund
,
R.
Mansoor
, and
M.
Stading
, “
Simultaneous x-ray video-fluoroscopy and pulsed ultrasound velocimetry analyses of the pharyngeal phase of swallowing of boluses with different rheological properties
,”
Dysphagia
35
,
898
906
(
2020
).
8.
Kumagai
,
H.
,
A.
Tashiro
,
A.
Hasegawa
,
K.
Kohyama
, and
H.
Kumagai
, “
Relationship between flow properties of thickener solutions and their velocity through the pharynx measured by the ultrasonic pulse Doppler method
,”
Food Sci. Technol. Res.
15
,
203
210
(
2009
).
9.
Tashiro
,
A.
,
A.
Hasegawa
,
K.
Kohyama
,
H.
Kumagai
, and
H.
Kumagai
, “
Relationship between the rheological properties of thickener solutions and their velocity through the pharynx as measured by the ultrasonic pulse Doppler method
,”
Biosci. Biotechnol. Biochem.
74
,
1598
1605
(
2010
).
10.
Gao
,
Z.
, and
K.
Kohyama
, “
Ultrasound pulsed wave Doppler imaging of the esophagus illustrates the effects of water volume on bolus kinematics
,”
J. Texture Stud.
45
,
335
343
(
2014
).
11.
Munialo
,
C. D.
,
V.
Kontogiorgos
,
S. R.
Euston
, and
I.
Nyambayo
, “
Rheological, tribological and sensory attributes of texture-modified foods for dysphagia patients and the elderly: A review
,”
Int. J. Food Sci. Technol.
55
,
1862
1871
(
2020
).
12.
Methacanon
,
P.
,
C.
Gamonpilas
,
A.
Kongjaroen
, and
C.
Buathongjan
, “
Food polysaccharides and roles of rheology and tribology in rational design of thickened liquids for oropharyngeal dysphagia: A review
,”
Compr. Rev. Food Sci. Food Saf.
20
,
4101
4119
(
2021
).
13.
Gamonpilas
,
C.
,
A.
Kongjaroen
, and
P.
Methacanon
, “
The importance of shear and extensional rheology and tribology as the design tools for developing food thickeners for dysphagia management
,”
Food Hydrocoll.
140
,
108603
(
2023
).
14.
Nishinari
,
K.
,
K.
Zhang
,
N.
Yang
,
Z.
Gao
,
C.
Gamonpilas
,
M.
Turcanu
,
M.-A.
Peyron
,
Y.
Fang
,
Y.
Nitta
, and
X.
Yao
et al., “
Rheology for safe swallowing 1
,”
J. Soc. Rheol. Jpn.
51
,
219
248
(
2023
).
15.
Nishinari
,
K.
, “
Rheology in food and eating
,”
J. Soc. Rheol. Jpn.
31
,
41
50
(
2003
).
16.
Schatzmann
,
M.
,
P.
Fischer
, and
G. R.
Bezzola
, “
Rheological behavior of fine and large particle suspensions
,”
J. Hydraul. Eng.
129
,
796
803
(
2003
).
17.
Schatzmann
,
M.
,
G. R.
Bezzola
,
H.-E.
Minor
,
E. J.
Windhab
, and
P.
Fischer
, “
Rheometry for large-particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry
,”
Rheol. Acta
48
,
715
733
(
2009
).
18.
Asai
,
K.
,
M.
Ichiyanagi
,
H.
Satone
,
T.
Mori
,
J.
Tsubaki
, and
Y.
Itoh
, “
The influence of non-newtonian property on the apparent viscosity measured by single cylinder rotational viscometer (type-b viscometer)
,”
J. Soc. Powder Technol. Jpn
46
,
873
880
(
2009
).
19.
Mori
,
T.
,
S.
Moriyama
,
T.
Nakagawa
, and
J.
Tsubaki
, “
Measurement of apparent viscosity of various fluids by using b-type and vibration-type viscometers
,”
J. Soc. Rheol. Jpn.
45
,
157
165
(
2017
).
20.
Murai
,
Y.
, and
H.
Oiwa
, “
Increase of effective viscosity in bubbly liquids from transient bubble deformation
,”
Fluid Dyn. Res.
40
,
565
575
(
2008
).
21.
Irgens
,
F.
,
Rheology and Non-newtonian Fluids
(
Springer
,
Germany
,
2014
), Vol. 1.
22.
Yoshida
,
T.
,
Y.
Tasaka
, and
Y.
Murai
, “
Efficacy assessments in ultrasonic spinning rheometry: Linear viscoelastic analysis on non-newtonian fluids
,”
J. Rheol.
63
,
503
517
(
2019
).
23.
Yoshida
,
T.
,
Y.
Tasaka
, and
P.
Fischer
, “
Ultrasonic spinning rheometry test on the rheology of gelled food for making better tasting desserts
,”
Phys. Fluids
31
,
113101
(
2019
).
24.
Ohie
,
K.
,
T.
Yoshida
, and
Y.
Tasaka
, “
Coupling a torque rheometer with an ultrasonic velocity profiler for evaluating multiphase fluids in oscillatory shear flows
,”
J. Rheol.
68
,
665
678
(
2024
).
25.
Ohie
,
K.
,
D.
Nishizuka
,
T.
Yoshida
, and
Y.
Tasaka
, “
Cost-effective production of density-controllable monodisperse spheres for experiments in fluids
,”
Phys. Fluids
36
,
091704
(
2024
).
26.
Salmon
,
J.-B.
,
L.
Bécu
,
S.
Manneville
, and
A.
Colin
, “
Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering
,”
Eur. Phys. J. B
10
,
209
221
(
2003
).
27.
Bécu
,
L.
,
S.
Manneville
, and
A.
Colin
, “
Yielding and flow in adhesive and nonadhesive concentrated emulsions
,”
Phys. Rev. Lett.
96
,
138302
(
2006
).
28.
Gallot
,
T.
,
C.
Perge
,
V.
Grenard
,
M.-A.
Fardin
,
N.
Taberlet
, and
S.
Manneville
, “
Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration
,”
Rev. Sci. Instrum.
84
,
045107
(
2013
).
29.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
,
S.
Teitel
, and
S.
Manneville
, “
Yielding dynamics of a Herschel–Bulkley fluid: A critical-like fluidization behaviour
,”
Soft Matter
8
,
4151
4164
(
2012
).
30.
Derakhshandeh
,
B.
,
D.
Vlassopoulos
, and
S. G.
Hatzikiriakos
, “
Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions
,”
Rheol. Acta
51
,
201
214
(
2012
).
31.
Ohie
,
K.
,
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “
Flow prediction of complex fluids in a circular pipe by utilizing a velocity-profiling-assisted rheometer
,”
Ind. Eng. Chem. Res.
61
,
18157
18164
(
2022
).
32.
Shiratori
,
T.
,
Y.
Tasaka
,
Y.
Oishi
, and
Y.
Murai
, “
Ultrasonic velocity profiling rheometry based on a widened circular Couette flow
,”
Meas. Sci. Technol.
26
,
085302
(
2015
).
33.
Saint-Michel
,
B.
,
T.
Gibaud
,
M.
Leocmach
, and
S.
Manneville
, “
Local oscillatory rheology from echography
,”
Phys. Rev. Appl.
5
,
034014
(
2016
).
34.
Tasaka
,
Y.
,
T.
Yoshida
,
R.
Rapberger
, and
Y.
Murai
, “
Linear viscoelastic analysis using frequency-domain algorithm on oscillating circular shear flows for bubble suspensions
,”
Rheol. Acta
57
,
229
240
(
2018
).
35.
Ghannam
,
M. T.
, and
M. N.
Esmail
, “
Rheological properties of carboxymethyl cellulose
,”
J. Appl. Polym. Sci.
64
,
289
301
(
1997
).
36.
Benchabane
,
A.
, and
K.
Bekkour
, “
Rheological properties of carboxymethyl cellulose (CMC) solutions
,”
Colloid Polym. Sci.
286
,
1173
1180
(
2008
).
37.
Ohie
,
K.
,
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “
Effective rheology mapping for characterizing polymer solutions utilizing ultrasonic spinning rheometry
,”
Exp. Fluids
63
,
40
(
2022
).
38.
Charoensri
,
P.
,
S.
Aspinall
,
F.
Liu
, and
K.
Kijroongrojana
, “
Rheological, textural, and swallowing characteristics of xanthan gum-modified riceberry porridge for patients with dysphagia
,”
J. Texture Stud.
55
,
e12853
(
2024
).
39.
Mueller
,
S.
,
E.
Llewellin
, and
H.
Mader
, “
The rheology of suspensions of solid particles
,”
Proc. R. Soc. A
466
,
1201
1228
(
2010
).
40.
Mader
,
H.
,
E.
Llewellin
, and
S.
Mueller
, “
The rheology of two-phase magmas: A review and analysis
,”
J. Volcanol. Geotherm. Res.
257
,
135
158
(
2013
).
41.
Djalili-Moghaddam
,
M.
, and
S.
Toll
, “
Fibre suspension rheology: Effect of concentration, aspect ratio and fibre size
,”
Rheol. Acta
45
,
315
320
(
2006
).
42.
Marín-Santibáñez
,
B. M.
,
J.
Pérez-González
, and
L.
de Vargas
, “
Shear rheometry and visualization of glass fiber suspensions
,”
Rheol. Acta
49
,
177
189
(
2010
).
43.
Prinz
,
J. F.
, and
P. W.
Lucas
, “
An optimization model for mastication and swallowing in mammals
,”
Proc. R. Soc. Lond. B
264
,
1715
1721
(
1997
).
44.
Nishinari
,
K.
,
K.
Kohyama
,
H.
Kumagai
,
T.
Funami
, and
M. C.
Bourne
, “
Parameters of texture profile analysis
,”
Food Sci. Technol. Res.
19
,
519
521
(
2013
).
45.
Paik
,
N.-J.
,
T. R.
Han
,
J. W.
Park
,
E. K.
Lee
,
M. S.
Park
, and
I.-K.
Hwang
, “
Categorization of dysphagia diets with the line spread test
,”
Arch. Phys. Med. Rehabil.
85
,
857
861
(
2004
).
46.
Nicosia
,
M. A.
, and
J.
Robbins
, “
The usefulness of the line spread test as a measure of liquid consistency
,”
Dysphagia
22
,
306
311
(
2007
).
47.
Marconati
,
M.
,
J.
Engmann
,
A.
Burbidge
,
V.
Mathieu
,
I.
Souchon
, and
M.
Ramaioli
, “
A review of the approaches to predict the ease of swallowing and post-swallow residues
,”
Trends Food Sci. Technol.
86
,
281
297
(
2019
).
You do not currently have access to this content.