We examine the rheology of bicontinuous interfacially jammed emulsion gels (bijels) beyond the limit of linear viscoelasticity and propose a simple model that connects bijel rheology to anticipated microstructural changes in the continuous particle-laden interface. The basic elements of our model are constructed from a linear stress relaxation experiment, which suggests glasslike rheology mediated by α (out-of-cage) and β (in-cage) particle dynamics along the interface in this limit. Extending to medium amplitude oscillatory shear experiments then reveals signatures of nonlinearity, which we rationalize as the combined effect of shear-induced dilation of the interface and its simultaneous recompaction by interfacial tension, as well as potential buckling along portions of the interface under compression. Informed by these observations, we present a double Maxwell model with sigmoidal nonlinearities introduced to account for how interfacial dilation and recompaction affect the intercage particle dynamics (α relaxation) along the interface and buckling. This simple model successfully captures the general features of nonlinear rheology in bijels, indicating that their linear-to-nonlinear transition is associated with loss of compaction along the dilated and buckling along the compacted regions of the interface. Our results shed initial light on the microstructural origins of nonlinear rheology in bijels and the reconfigurability afforded in these systems by the balance of glassy particle dynamics and interfacial recompaction under shear deformation.

1.
Stratford
,
K.
,
R.
Adhikari
,
I.
Pagonabarraga
,
J. C.
Desplat
, and
M. E.
Cates
, “
Colloidal jamming at interfaces: A route to fluid-bicontinuous gels
,”
Science
309
(
5744
),
2198
2201
(
2005
).
2.
Cates
,
M. E.
, and
P. S.
Clegg
, “
Bijels: A new class of soft materials
,”
Soft Matter
4
,
2132
2138
(
2008
).
3.
Haase
,
M. F.
,
K. J.
Stebe
, and
D.
Lee
, “
Continuous fabrication of hierarchical and asymmetric bijel microparticles, fibers, and membranes by solvent transfer-induced phase separation (STRIPS)
,”
Adv. Mater.
27
(
44
),
7065
7071
(
2015
).
4.
Haase
,
M. F.
,
H.
Jeon
,
N.
Hough
,
J. H.
Kim
,
K. J.
Stebe
, and
D.
Lee
, “
Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation
,”
Nat. Commun.
8
(
1
), 1234 (
2017
).
5.
Günther
,
F.
,
F.
Janoschek
,
S.
Frijters
, and
J.
Harting
, “
Lattice Boltzmann simulations of anisotropic particles at liquid interfaces
,”
Comput. Fluids
80
,
184
189
(
2013
).
6.
Cheng
,
H.-L.
, and
S. S.
Velankar
, “
Controlled jamming of particle-laden interfaces using a spinning drop tensiometer
,”
Langmuir
25
(
8
),
4412
4420
(
2009
).
7.
Hijnen
,
N.
,
D.
Cai
, and
P. S.
Clegg
, “
Bijels stabilized using rod-like particles
,”
Soft Matter
11
(
22
),
4351
4355
(
2015
).
8.
Herzig
,
E. M.
,
K. A.
White
,
A. B.
Schofield
,
W. C. K.
Poon
, and
P. S.
Clegg
, “
Bicontinuous emulsions stabilized solely by colloidal particles
,”
Nat. Mater.
6
(
12
),
966
971
(
2007
).
9.
Witt
,
J.
,
D. R.
Mumm
, and
A.
Mohraz
, “
Bijel reinforcement by droplet bridging: A route to bicontinuous materials with large domains
,”
Soft Matter
9
(
29
),
6773
6780
(
2013
).
10.
French
,
D. J.
,
A. B.
Schofield
, and
J. H. J.
Thijssen
, “
Bicontinuous soft solids with a gradient in channel size
,”
Adv. Mater. Interfaces
9
(
13
),
2102307
(
2022
).
11.
Lee
,
M. N.
, and
A.
Mohraz
, “
Hierarchically porous silver monoliths from colloidal bicontinuous interfacially jammed emulsion gels
,”
J. Am. Chem. Soc.
133
(
18
),
6945
6947
(
2011
).
12.
Lee
,
M. N.
,
M. A.
Santiago-Cordoba
,
C. E.
Hamilton
,
N. K.
Subbaiyan
,
J. G.
Duque
, and
K. A. D.
Obrey
, “
Developing monolithic nanoporous gold with hierarchical bicontinuity using colloidal bijels
,”
J. Phys. Chem. Lett.
5
(
5
),
809
812
(
2014
).
13.
Witt
,
J. A.
,
D. R.
Mumm
, and
A.
Mohraz
, “
Microstructural tunability of co-continuous bijel-derived electrodes to provide high energy and power densities
,”
J. Mater. Chem. A
4
(
3
),
1000
1007
(
2016
).
14.
Cai
,
D.
,
F. H.
Richter
,
J. H. J.
Thijssen
,
P. G.
Bruce
, and
P. S.
Clegg
, “
Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt
,”
Mater. Horiz.
5
(
3
),
499
505
(
2018
).
15.
McDevitt
,
K. M.
,
D. R.
Mumm
, and
A.
Mohraz
, “
Improving cyclability of ZnO electrodes through microstructural design
,”
ACS Appl. Energy Mater.
2
(
11
),
8107
8117
(
2019
).
16.
Santiago Cordoba
,
M. A.
,
J. S.
Spendelow
,
A. N. G.
Parra-Vasquez
,
L. A.
Kuettner
,
P. M.
Welch
,
C. E.
Hamilton
,
J. A.
Oertel
,
J. G.
Duque
,
E. J.
Meierdierks
,
T. A.
Semelsberger
,
J. C.
Gordon
, and
M. N.
Lee
, “
Aerobijels: Ultralight carbon monoliths from cocontinuous emulsions
,”
Adv. Funct. Mater.
30
(
6
),
1908383
(
2020
).
17.
Gross
,
S. J.
,
K. M.
McDevitt
,
D. R.
Mumm
, and
A.
Mohraz
, “
Mitigating bubble traffic in gas-evolving electrodes via spinodally derived architectures
,”
ACS Appl. Mater. Interfaces
13
(
7
),
8528
8537
(
2021
).
18.
Di Vitantonio
,
G.
,
T.
Wang
,
M. F.
Haase
,
K. J.
Stebe
, and
D.
Lee
, “
Robust bijels for reactive separation via silica-reinforced nanoparticle layers
,”
ACS Nano
13
(
1
),
26
31
(
2019
).
19.
Cha
,
S.
,
H. G.
Lim
,
M. F.
Haase
,
K. J.
Stebe
,
G. Y.
Jung
, and
D.
Lee
, “
Bicontinuous interfacially jammed emulsion gels (bijels) as media for enabling enzymatic reactive separation of a highly water insoluble substrate
,”
Sci. Rep.
9
(
1
),
6363
(
2019
).
20.
Thorson
,
T. J.
,
E. L.
Botvinick
, and
A.
Mohraz
, “
Composite bijel-templated hydrogels for cell delivery
,”
ACS Biomater. Sci. Eng.
4
(
2
),
587
594
(
2018
).
21.
Thorson
,
T. J.
,
R. E.
Gurlin
,
E. L.
Botvinick
, and
A.
Mohraz
, “
Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization
,”
Acta Biomater.
94
,
173
182
(
2019
).
22.
Hsieh
,
M.-T.
,
B.
Endo
,
Y.
Zhang
,
J.
Bauer
, and
L.
Valdevit
, “
The mechanical response of cellular materials with spinodal topologies
,”
J. Mech. Phys. Solids
125
,
401
419
(
2019
).
23.
Zhang
,
Y.
,
M.-T.
Hsieh
, and
L.
Valdevit
, “
Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies
,”
Compos. Struct.
263
,
113693
(
2021
).
24.
Bonaccorso
,
F.
,
S.
Succi
,
M.
Lauricella
,
A.
Montessori
,
A.
Tiribocchi
, and
K. H.
Luo
, “
Shear dynamics of confined bijels
,”
AIP Adv.
10
(
9
),
095304
(
2020
).
25.
Kharal
,
S. P.
, and
M. F.
Haase
, “
Centrifugal assembly of helical bijel fibers for pH responsive composite hydrogels
,”
Small
18
(
11
),
2106826
(
2022
).
26.
Lee
,
M. N.
, and
A.
Mohraz
, “
Bicontinuous macroporous materials from bijel templates
,”
Adv. Mater.
22
(
43
),
4836
4841
(
2010
).
27.
Lee
,
M. N.
,
J. H. J.
Thijssen
,
J. A.
Witt
,
P. S.
Clegg
, and
A.
Mohraz
, “
Making a robust interfacial scaffold: Bijel rheology and its link to processability
,”
Adv. Funct. Mater.
23
(
4
),
417
423
(
2013
).
28.
Macmillan
,
K. A.
,
J. R.
Royer
,
A.
Morozov
,
Y. M.
Joshi
,
M.
Cloitre
, and
P. S.
Clegg
, “
Rheological behavior and in situ confocal imaging of bijels made by mixing
,”
Langmuir
35
(
33
),
10927
10936
(
2019
).
29.
Thijssen
,
J. H. J.
, and
J.
Vermant
, “
Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions
,”
J. Phys.: Condens. Matter
30
,
023002
(
2018
).
30.
Ching
,
H.
, and
A.
Mohraz
, “
Bijel rheology reveals a 2D colloidal glass wrapped in 3D
,”
Soft Matter
18
,
4227
4238
(
2022
).
31.
Cates
,
M. E.
, and
P. S.
Clegg
, “
Bijels: A new class of soft materials
,”
Soft Matter
4
,
2132
2138
(
2008
).
32.
Mason
,
T. G.
, and
D. A.
Weitz
, “
Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition
,”
Phys. Rev. Lett.
75
(
14
),
2770
2773
(
1995
).
33.
Tavacoli
,
J. W.
,
J. H. J.
Thijssen
,
A. B.
Schofield
, and
P. S.
Clegg
, “
Novel, robust, and versatile bijels of nitromethane, ethanediol, and colloidal silica: Capsules, sub-ten-micrometer domains, and mechanical properties
,”
Adv. Funct. Mater.
21
(
11
),
2020
2027
(
2011
).
34.
Rumble
,
K. A.
,
J. H. J.
Thijssen
,
A. B.
Schofield
, and
P. S.
Clegg
, “
Compressing a spinodal surface at fixed area: Bijels in a centrifuge
,”
Soft Matter
12
(
19
),
4375
4383
(
2016
).
35.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
,
Complex fluids in biological systems: Experiment, theory, and computation
, in
Biological and Medical Physics, Biomedical Engineering
(
Springer
,
New York
,
2015
).
36.
Bai
,
L.
,
J. W.
Fruehwirth
,
X.
Cheng
, and
C. W.
Macosko
, “
Dynamics and rheology of nonpolar bijels
,”
Soft Matter
11
(
26
),
5282
5293
(
2015
).
37.
Pham
,
K. N.
,
S. U.
Egelhaaf
,
P. N.
Pusey
, and
W. C. K.
Poon
, “
Glasses in hard spheres with short-range attraction
,”
Phys. Rev. E
69
(
1
),
011503
(
2004
).
38.
Petekidis
,
G.
, and
N. J.
Wagner
,
Rheology of colloidal glasses and gels
, in
Theory and Applications of Colloidal Suspension Rheology
, 1st ed., edited by
N. J.
Wagner
and
J.
Mewis
(
Cambridge University
, Cambridge,
2021
), pp.
173
226
.
39.
Datta
,
S. S.
,
D. D.
Gerrard
,
T. S.
Rhodes
,
T. G.
Mason
, and
D. A.
Weitz
, “
Rheology of attractive emulsions
,”
Phys. Rev. E
84
(
4
),
041404
(
2011
).
40.
Sanatkaran
,
N.
,
M.
Zhou
, and
R.
Foudazi
, “
Rheology of macro- and nano-emulsions in the presence of micellar depletion attraction
,”
J. Rheol.
65
(
3
),
453
461
(
2021
).
41.
Kapnistos
,
M.
,
A. N.
Semenov
,
D.
Vlassopoulos
, and
J.
Roovers
, “
Viscoelastic response of hyperstar polymers in the linear regime
,”
J. Chem. Phys.
111
(
4
),
1753
1759
(
1999
).
42.
Peters
,
B. L.
,
K. M.
Salerno
,
T.
Ge
,
D.
Perahia
, and
G. S.
Grest
, “
Viscoelastic response of dispersed entangled polymer melts
,”
Macromolecules
53
(
19
),
8400
8405
(
2020
).
43.
Parisi
,
D.
,
E.
Buenning
,
N.
Kalafatakis
,
L.
Gury
,
B. C.
Benicewicz
,
M.
Gauthier
,
M.
Cloitre
,
M.
Rubinstein
,
S. K.
Kumar
, and
D.
Vlassopoulos
, “
Universal polymeric-to-colloidal transition in melts of hairy nanoparticles
,”
ACS Nano
15
(
10
),
16697
16708
(
2021
).
44.
Mendoza
,
A. J.
,
E.
Guzmán
,
F.
Martínez-Pedrero
,
H.
Ritacco
,
R. G.
Rubio
,
F.
Ortega
,
V. M.
Starov
, and
R.
Miller
, “
Particle laden fluid interfaces: Dynamics and interfacial rheology
,”
Adv. Colloid Interface Sci.
206
,
303
319
(
2014
).
45.
de Souza Mendes
,
P. R.
, “
Thixotropic elasto-viscoplastic model for structured fluids
,”
Soft Matter
7
(
6
),
2471–2483
(
2011
).
46.
Kamani
,
K.
,
G. J.
Donley
, and
S. A.
Rogers
, “
Unification of the rheological physics of yield stress fluids
,”
Phys. Rev. Lett.
126
(
21
),
218002
(
2021
).
47.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
(
1
),
27
70
(
2013
).
48.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
49.
Liu
,
A. J.
, and
S. R.
Nagel
, “
Jamming is not just cool any more
,”
Nature
396
,
21
22
(
1998
).
50.
Janssen
,
L. M. C.
, “
Mode-coupling theory of the glass transition: A primer
,”
Front. Phys.
6
,
97
(
2018
).
51.
Ghosh
,
A.
,
V.
Chikkadi
,
P.
Schall
, and
D.
Bonn
, “
Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass
,”
Phys. Rev. Lett.
107
(
18
),
188303
(
2011
).
You do not currently have access to this content.