We develop a two-stage computational method to assimilate linear viscoelastic material functions (LMFs), viz., stress relaxation modulus, creep compliance, and the complex modulus, by inferring a consensus discrete relaxation spectrum (DRS) that simultaneously fits all three LMFs. In the first stage, the DRS corresponding to the different LMFs is deduced independently, before they are combined heuristically to generate an initial guess for the consensus DRS. In the second stage, this initial guess is refined using nonlinear least squares regression. The effectiveness of this method for data fusion and validation is demonstrated by analyzing experimental data collected on two different polymer melt systems. We also investigate the performance of the method when the timescales probed by the LMFs do not overlap, or are limited to 4–6 decades, as is typically the case for thermorheologically complex materials. To explore these questions, we generate synthetic datasets by obscuring information from one of the experimental datasets. We find that the computational protocol works quite well. As expected, the quality of the inferred DRS is marginally impaired because information is suppressed.

1.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
2.
Tschoegl
,
N. W.
,
The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction
, 1st ed. (
Springer
,
Munich
,
1989
).
3.
Saxe
,
J.
, and
P.
Galdone
,
The Blind Men and the Elephant
(
Whittlesey House
,
New York
,
1963
).
4.
Berry
,
G. C.
, and
T. G.
Fox
, “
The viscosity of polymers and their concentrated solutions
,”
Adv. Polym. Sci.
5
,
261
357
(
1968
).
5.
Markovitz
,
H.
, “
Superposition in rheology
,”
J. Polym. Sci.: Polym. Symp.
50
,
431
456
(
1975
).
6.
Heo
,
Y.
, and
R. G.
Larson
, “
Universal scaling of linear and nonlinear rheological properties of semidilute and concentrated polymer solutions
,”
Macromolecules
41
,
8903
8915
(
2008
).
7.
Dealy
,
J.
, and
D.
Plazek
, “
Time-temperature superposition—A users guide
,”
Rheol. Bull
78
,
16
31
(
2009
).
8.
Talebi
,
S.
,
R.
Duchateau
,
S.
Rastogi
,
J.
Kaschta
,
G. W. M.
Peters
, and
P. J.
Lemstra
, “
Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst
,”
Macromolecules
43
,
2780
2788
(
2010
).
9.
Shanbhag
,
S.
, “
Inference of polymer structure by simultaneous analysis of chromatographic and rheological measurements
,”
Rheol. Acta
52
,
973
988
(
2013
).
10.
Reyes
,
P.
,
M.
Edeleva
,
D. R.
D’hooge
,
L.
Cardon
, and
P.
Cornillie
, “
Combining chromatographic, rheological, and mechanical analysis to study the manufacturing potential of acrylic blends into polyacrylic casts
,”
Materials
14
,
6939
(
2021
).
11.
Ricarte
,
R. G.
, and
S.
Shanbhag
, “
A tutorial review of linear rheology for polymer chemists: Basics and best practices for covalent adaptable networks
,”
Polym. Chem.
15
,
815
846
(
2024
).
12.
Plazek
,
D. J.
, and
I.
Echeverria
, “
Don’t cry for me Charlie Brown, or with compliance comes comprehension
,”
J. Rheol.
44
,
831
841
(
2000
).
13.
Ricarte
,
R. G.
, and
S.
Shanbhag
, “
Unentangled vitrimer melts: Interplay between chain relaxation and cross-link exchange controls linear rheology
,”
Macromolecules
54
,
3304
3320
(
2021
).
14.
Ricarte
,
R. G.
,
S.
Shanbhag
,
D.
Ezzeddine
,
D.
Barzycki
, and
K.
Fay
, “
Time-temperature superposition of polybutadiene vitrimers
,”
Macromolecules
56
,
6806
6817
(
2023
).
15.
Baker
,
C. T.
, “
A perspective on the numerical treatment of Volterra equations
,”
J. Comput. Appl. Math.
125
,
217
249
(
2000
).
16.
de L. Kronig
,
R.
, “
On the theory of dispersion of X-rays
,”
J. Opt. Soc. Am.
12
,
547
557
(
1926
).
17.
Kramers
,
H. A.
, “La diffusion de la lumiere par les atomes,” Atti Cong. Intern. Fisica, Como 2, 545–557 .
18.
Rouleau
,
L.
,
J.-F.
Deü
,
A.
Legay
, and
F.
Le Lay
, “
Application of Kramers-Kronig relations to time-temperature superposition for viscoelastic materials
,”
Mech. Mater.
65
,
66
75
(
2013
).
19.
Gupta
,
R.
,
B.
Baldewa
, and
Y. M.
Joshi
, “
Time temperature superposition in soft glassy materials
,”
Soft Matter
8
,
4171
4176
(
2012
).
20.
Shukla
,
A.
,
S.
Shanbhag
, and
Y. M.
Joshi
, “
Analysis of linear viscoelasticity of aging soft glasses
,”
J. Rheol.
64
,
1197
1207
(
2020
).
21.
Winter
,
H. H.
, “
Analysis of dynamic mechanical data: Inversion into a relaxation time spectrum and consistency check
,”
J. Non-Newtonian Fluid Mech.
68
,
225
239
(
1997
).
22.
Poudel
,
S.
, and
S.
Shanbhag
, “
Efficient test to evaluate the consistency of elastic and viscous moduli with Kramers–Kronig relations
,”
Korea-Aust. Rheol. J.
34
,
369
379
(
2022
).
23.
Shanbhag
,
S.
, and
Y. M.
Joshi
, “
Kramers-Kronig relations for nonlinear rheology. Part II: Validation of medium amplitude oscillatory shear (MAOS) measurements
,”
J. Rheol.
66
,
925
936
(
2022
).
24.
Shanbhag
,
S.
, and
Y. M.
Joshi
, “
Kramers-Kronig relations for nonlinear rheology. Part I: General expression and implications
,”
J. Rheol.
66
,
973
982
(
2022
).
25.
Hopkins
,
I. L.
, and
R. W.
Hamming
, “
On creep and relaxation
,”
J. Appl. Phys.
28
,
906
909
(
1957
).
26.
Knoff
,
W. F.
, and
I. L.
Hopkins
, “
An improved numerical interconversion for creep compliance and relaxation modulus
,”
J. Appl. Polym. Sci.
16
,
2963
2972
(
1972
).
27.
Linz
,
P.
,
Analytical and Numerical Methods for Volterra Equations
(
SIAM
,
Philadelphia
,
1985
).
28.
Nikonov
,
A.
,
A. R.
Davies
, and
I.
Emri
, “
The determination of creep and relaxation functions from a single experiment
,”
J. Rheol.
49
,
1193
1211
(
2005
).
29.
Sorvari
,
J.
, and
M.
Malinen
, “
Numerical interconversion between linear viscoelastic material functions with regularization
,”
Int. J. Solids Struct.
44
,
1291
1303
(
2007
).
30.
Evans
,
R. M. L.
,
M.
Tassieri
,
D.
Auhl
, and
T. A.
Waigh
, “
Direct conversion of rheological compliance measurements into storage and loss moduli
,”
Phys. Rev. E
80
,
012501
(
2009
).
31.
Tassieri
,
M.
,
R. M. L.
Evans
,
R. L.
Warren
,
N. J.
Bailey
, and
J. M.
Cooper
, “
Microrheology with optical tweezers: Data analysis
,”
New J. Phys.
14
,
115032
(
2012
).
32.
Gross
,
B.
,
Mathematical Structure of the Theories of Viscoelasticity
(
Hermann
,
Paris
,
1953
).
33.
Baumgaertel
,
M.
, and
H. H.
Winter
, “
Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
,”
Rheol. Acta
28
,
511
519
(
1989
).
34.
Sorvari
,
J.
, and
M.
Malinen
, “
On the direct estimation of creep and relaxation functions
,”
Mech. Time-Depend. Mater.
11
,
143
157
(
2007
).
35.
Mead
,
D. W.
, “
Numerical interconversion of linear viscoelastic material functions
,”
J. Rheol.
38
,
1769
1795
(
1994
).
36.
Park
,
S.
, and
R.
Schapery
, “
Methods of interconversion between linear viscoelastic material functions. Part I - a numerical method based on Prony series
,”
Int. J. Solids Struct.
36
,
1653
1675
(
1999
).
37.
Luk-Cyr
,
J.
,
T.
Crochon
,
C.
Li
, and
M.
Lévesque
, “
Interconversion of linearly viscoelastic material functions expressed as Prony series: A closure
,”
Mech. Time-Depend. Mater.
17
,
53
82
(
2013
).
38.
Liu
,
Y.
, “
A direct method for obtaining discrete relaxation spectra from creep data
,”
Rheol. Acta
40
,
256
260
(
2001
).
39.
Dooling
,
P. J.
,
C. P.
Buckley
, and
S.
Hinduja
, “
An intermediate model method for obtaining a discrete relaxation spectrum from creep data
,”
Rheol. Acta
36
,
472
482
(
1997
).
40.
Loy
,
R. J.
,
F. R.
de Hoog
, and
R. S.
Anderssen
, “
Interconversion of Prony series for relaxation and creep
,”
J. Rheol.
59
,
1261
1270
(
2015
).
41.
Shanbhag
,
S.
, “
A computer program for interconversion between creep compliance and stress relaxation
,”
J. Rheol.
67
,
965
975
(
2023
).
42.
Kress
,
R.
, Linear Integral Equations, Applied Mathematical Sciences (Springer, New York, 2013).
43.
Wiff
,
D. R.
, “
RQP method of inferring a mechanical relaxation spectrum
,”
J. Rheol.
22
,
589
597
(
1978
).
44.
Cho
,
K. S.
,
Viscoelasticity of Polymers: Theory and Numerical Algorithms
(
Springer
,
Dordrecht, the Netherlands
,
2016
).
45.
Fuoss
,
R. M.
, and
J. G.
Kirkwood
, “
Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems
,”
J. Am. Chem. Soc.
63
,
385
394
(
1941
).
46.
Malkin
,
A. Y.
, and
I.
Masalova
, “
From dynamic modulus via different relaxation spectra to relaxation and creep functions
,”
Rheol. Acta
40
,
261
271
(
2001
).
47.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth-Heinemann
,
Stoneham, MA
,
1988
).
48.
Provencher
,
S. W.
, “
An eigenfunction expansion method for the analysis of exponential decay curves
,”
J. Chem. Phys.
64
,
2772
2777
(
1976
).
49.
Takeh
,
A.
, and
S.
Shanbhag
, “
A computer program to extract the continuous and discrete relaxation spectra from dynamic viscoelastic measurements
,”
Appl. Rheol.
23
,
24628
(
2013
).
50.
Shanbhag
,
S.
, “
pyReSpect: A computer program to extract discrete and continuous spectra from stress relaxation experiments
,”
Macromol. Theory Simul.
8
,
1900005
(
2019
).
51.
Shanbhag
,
S.
, “
Relaxation spectra using nonlinear Tikhonov regularization with a Bayesian criterion
,”
Rheol. Acta
59
,
509
520
(
2020
).
52.
Provencher
,
S. W.
, “
CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
,”
Comp. Phys. Comm.
27
,
229
242
(
1982
).
53.
Honerkamp
,
J.
, and
J.
Weese
, “
Determination of the relaxation spectrum by a regularization method
,”
Macromolecules
22
,
4372
4377
(
1989
).
54.
Weese
,
J.
, “
A reliable and fast method for the solution of Fredholm integral equations of the first kind based on Tikhonov regularization
,”
Comp. Phys. Comm.
69
,
99
111
(
1992
).
55.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
,
65
73
(
1993
).
56.
Weese
,
J.
, “
A regularization method for nonlinear ill-posed problems
,”
Comp. Phys. Comm.
77
,
429
440
(
1993
).
57.
Roths
,
T.
,
M.
Marth
,
J.
Weese
, and
J.
Honerkamp
, “
A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms
,”
Comp. Phys. Comm.
139
,
279
296
(
2001
).
58.
Hansen
,
S.
, “
Estimation of the relaxation spectrum from dynamic experiments using Bayesian analysis and a new regularization constraint
,”
Rheol. Acta
47
,
169
178
(
2008
).
59.
Anderssen
,
R. S.
,
A. R.
Davies
, and
F. R.
de Hoog
, “
On the Volterra integral equation relating creep and relaxation
,”
Inverse Prob.
24
,
035009
(
2008
).
60.
Anderssen
,
R. S.
,
A. R.
Davies
, and
F. R.
de Hoog
, “
On the sensitivity of interconversion between relaxation and creep
,”
Rheol. Acta
47
,
159
167
(
2008
).
61.
Anderssen
,
R. S.
,
A. R.
Davies
, and
F. R.
de Hoog
, “
On the interconversion integral equation for relaxation and creep
,”
ANZIAM J.
48
,
C346
C363
(
2007
).
62.
Striegel
,
A. M.
, “
Specific refractive index increment ( n / c) of polymers at 660 nm and 690 nm
,”
Chromatographia
80
,
989
996
(
2017
).
63.
Kikuchi
,
M.
,
M.
Kobayashi
,
A.
Tanaka
, and
A.
Takahara
, “
Chain dimension of polystyrene-like hyperbranched polymers with various chain end groups in THF
,”
J. Phys. Conf. Ser.
184
,
012033
(
2009
).
64.
Branch
,
M. A.
,
T. F.
Coleman
, and
Y.
Li
, “
A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems
,”
SIAM J. Sci. Comput.
21
,
1
23
(
1999
).
65.
Virtanen
,
P.
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
66.
Bae
,
J.
, and
K. S.
Cho
, “
A systematic approximation of discrete relaxation time spectrum from the continuous spectrum
,”
J. Non-Newtonian Fluid Mech.
235
,
64
75
(
2016
).
67.
Davies
,
A. R.
, and
R. S.
Anderssen
, “
Sampling localization in determining the relaxation spectrum
,”
J. Non-Newton. Fluid Mech.
73
,
163
179
(
1997
).
You do not currently have access to this content.