This study focuses on the rheological behavior of a cellulose nanocrystal gel. This system [5 wt. % cellulose nanocrystal (CNC) + 20 mM NaCl] is proved to be thixotropic, and the detected shear force tightly depends on the growth and break-up of the aggregates of CNC rods. From strain-controlled experiments, a nonmonotonic steady-state flow curve with a minimum stress value of ≈33 Pa is found, and the negative slope of stress versus shear rate suggests the existence of shear bands. From stress-controlled experiments (creep), the “static yield stress” is determined to be 67.5 ± 2.5 Pa. This difference proves that the local minimum stress of the flow curve does not coincide with the “static yield stress” determined by creep tests. However, this minimum stress can maintain flow provided that the material is already in a yielded state. At nominal shear rates below about 100 s−1, shearing is suggested to be localized in a shear band rather than over the whole material. The “dynamic yield stress” is found as “the minimum stress to maintain flow,” or the onset of shear banding. Moreover, wall slip also occurs at low nominal shear rates which is related to the interaction between the dynamic microstructure of the CNC gel and the wall: it is hypothesized that the low shear rates allow the CNC aggregates to extensively grow and, thus, the oversized CNC aggregates detach from the asperities of the wall. Our finding of the robust connection between yielding, thixotropy, wall slip, and shear banding shall shed new light on the nature of the nonmonotonic flow curves of yield stress and thixotropic materials.

1.
Pinkert
,
A.
,
K. N.
Marsh
,
S.
Pang
, and
M. P.
Staiger
, “
Ionic liquids and their interaction with cellulose
,”
Chem. Rev.
109
(
12
),
6712
6728
(
2009
).
2.
Benselfelt
,
T.
,
N.
Kummer
,
M.
Nordenström
,
A. B.
Fall
,
G.
Nyström
, and
L.
Wågberg
, “
The colloidal properties of nanocellulose
,”
ChemSusChem
16
(
8
),
e202201955
(
2023
).
3.
Dong
,
X. M.
, and
D. G.
Gray
, “
Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites
,”
Langmuir
13
(
8
),
2404
2409
(
1997
).
4.
Dong
,
X. M.
,
J.-F. O.
Revol
, and
D. G.
Gray
, “
Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
,”
Cellulose
5
,
19
32
(
1998
).
5.
Beck-Candanedo
,
S.
,
M.
Roman
, and
D. G.
Gray
, “
Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions
,”
Biomacromolecules
6
(
2
),
1048
1054
(
2005
).
6.
Dong
,
X. M.
,
T.
Kimura
,
J.-F.
Revol
, and
D. G.
Gray
, “
Effects of ionic strength on the isotropic−chiral nematic phase transition of suspensions of cellulose crystallites
,”
Langmuir
12
(
8
),
2076
2082
(
1996
).
7.
Mu
,
X.
, and
D. G.
Gray
, “
Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process
,”
Langmuir
30
(
31
),
9256
9260
(
2014
).
8.
Ranjbar
,
D.
, and
S. G.
Hatzikiriakos
, “
Effect of ionic surfactants on the viscoelastic properties of chiral nematic cellulose nanocrystal suspensions
,”
Langmuir
36
(
1
),
293
301
(
2020
).
9.
Pan
,
J.
,
W.
Hamad
, and
S. K.
Straus
, “
Parameters affecting the chiral nematic phase of nanocrystalline cellulose films
,”
Macromolecules
43
(
8
),
3851
3858
(
2010
).
10.
Shafiei-Sabet
,
S.
,
W. Y.
Hamad
, and
S. G.
Hatzikiriakos
, “
Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions
,”
Cellulose
21
(
5
),
3347
3359
(
2014
).
11.
Beck
,
S.
,
J.
Bouchard
, and
R.
Berry
, “
Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose
,”
Biomacromolecules
12
(
1
),
167
172
(
2011
).
12.
Shopsowitz
,
K. E.
,
H.
Qi
,
W. Y.
Hamad
, and
M. J.
MacLachlan
, “
Free-Standing mesoporous silica films with tunable chiral nematic structures
,”
Nature
468
(
7322
),
422
425
(
2010
).
13.
Revol
,
J.-F.
,
L.
Godbout
,
X.-M.
Dong
, and
D. G.
Gray
, “
Chiral nematic suspensions of cellulose
,” in
Cellulose and Cellulose Derivatives
(
Elsevier
,
New York
,
1995
), pp.
373
380
.
14.
Bercea
,
M.
, and
P.
Navard
, “
Shear dynamics of aqueous suspensions of cellulose whiskers
,”
Macromolecules
33
(
16
),
6011
6016
(
2000
).
15.
Ureña-Benavides
,
E. E.
,
G.
Ao
,
V. A.
Davis
, and
C. L.
Kitchens
, “
Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions
,”
Macromolecules
44
(
22
),
8990
8998
(
2011
).
16.
Oguzlu
,
H.
,
C.
Danumah
, and
Y.
Boluk
, “
Colloidal behavior of aqueous cellulose nanocrystal suspensions
,”
Curr. Opin. Colloid Interface Sci.
29
,
46
56
(
2017
).
17.
Xu
,
Y.
,
A. D.
Atrens
, and
J. R.
Stokes
, “
‘Liquid, gel and soft glass’ phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity
,”
Soft Matter
14
(
10
),
1953
1963
(
2018
).
18.
Xu
,
Y.
,
A. D.
Atrens
, and
J. R.
Stokes
, “
Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods
,”
J. Colloid Interface Sci.
496
,
130
140
(
2017
).
19.
Møller
,
P. C. F.
,
S.
Rodts
,
M. A. J.
Michels
, and
D.
Bonn
, “
Shear banding and yield stress in soft glassy materials
,”
Phys. Rev. E
77
(
4
),
041507
(
2008
).
20.
Danesh
,
M.
,
A. A.
Moud
,
D.
Mauran
,
S.
Hojabr
,
R.
Berry
,
M.
Pawlik
, and
S. G.
Hatzikiriakos
, “
The yielding of attractive gels of nanocrystal cellulose (CNC)
,”
J. Rheol.
65
(
5
),
855
869
(
2021
).
21.
Nikoumanesh
,
E.
, and
R.
Poling-Skutvik
, “
The effect of thixotropy on the yield transition in reversible, colloidal gels
,”
J. Chem. Phys.
159
(
4
),
044905
(
2023
).
22.
Ahuja
,
A.
,
A.
Potanin
, and
Y. M.
Joshi
, “
Two step yielding in soft materials
,”
Adv. Colloid Interface Sci.
282
,
102179
(
2020
).
23.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
(
6
),
2456
2470
(
2011
).
24.
Xu
,
Y.
,
E. P.
Gilbert
,
A.
Sokolova
, and
J. R.
Stokes
, “
Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS
,”
J. Colloid Interface Sci.
658
,
660
670
(
2024
).
25.
Fazilati
,
M.
,
S.
Ingelsten
,
S.
Wojno
,
T.
Nypelö
, and
R.
Kádár
, “
Thixotropy of cellulose nanocrystal suspensions
,”
J. Rheol.
65
(
5
),
1035
1052
(
2021
).
26.
Kam
,
D.
,
A.
Braner
,
A.
Abouzglo
,
L.
Larush
,
A.
Chiappone
,
O.
Shoseyov
, and
S.
Magdassi
, “
3D printing of cellulose nanocrystal-loaded hydrogels through rapid fixation by photopolymerization
,”
Langmuir
37
(
21
),
6451
6458
(
2021
).
27.
Koppolu
,
R.
,
T.
Abitbol
,
V.
Kumar
,
A. K.
Jaiswal
,
A.
Swerin
, and
M.
Toivakka
, “
Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard
,”
Cellulose
25
(
10
),
6055
6069
(
2018
).
28.
Lewis
,
L.
,
M.
Derakhshandeh
,
S. G.
Hatzikiriakos
,
W. Y.
Hamad
, and
M. J.
MacLachlan
, “
Hydrothermal gelation of aqueous cellulose nanocrystal suspensions
,”
Biomacromolecules
17
(
8
),
2747
2754
(
2016
).
29.
Xu
,
J.
,
P.
Wang
,
B.
Yuan
, and
H.
Zhang
, “
Rheology of cellulose nanocrystal and nanofibril suspensions
,”
Carbohydr. Polym.
324
,
121527
(
2024
).
30.
Bauer
,
W. H.
, and
E. A.
Collins
, “
Thixotropy and dilatancy
,” in
Rheology
(
Elsevier
,
New York
,
1967
), pp.
423
459
.
31.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
32.
Wang
,
Y.
, and
R. H.
Ewoldt
, “
New insights on carbon black suspension rheology—Anisotropic thixotropy and antithixotropy
,”
J. Rheol.
66
(
5
),
937
953
(
2022
).
33.
Derakhshandeh
,
B.
,
G.
Petekidis
,
S.
Shafiei Sabet
,
W. Y.
Hamad
, and
S. G.
Hatzikiriakos
, “
Ageing, yielding, and rheology of nanocrystalline cellulose suspensions
,”
J. Rheol.
57
(
1
),
131
148
(
2013
).
34.
Hendricks
,
J.
,
A.
Louhichi
,
V.
Metri
,
R.
Fournier
,
N.
Reddy
,
L.
Bouteiller
,
M.
Cloitre
,
C.
Clasen
,
D.
Vlassopoulos
, and
W. J.
Briels
, “
Nonmonotonic stress relaxation after cessation of steady shear flow in supramolecular assemblies
,”
Phys. Rev. Lett.
123
(
21
),
218003
(
2019
).
35.
Sudreau
,
I.
,
M.
Auxois
,
M.
Servel
,
É
Lécolier
,
S.
Manneville
, and
T.
Divoux
, “
Residual stresses and shear-induced overaging in boehmite gels
,”
Phys. Rev. Mater.
6
(
4
),
L042601
(
2022
).
36.
Morlet-Decarnin
,
L.
,
T.
Divoux
, and
S.
Manneville
, “
Critical-like gelation dynamics in cellulose nanocrystal suspensions
,”
ACS Macro Lett.
12
(
12
),
1733
1738
(
2023
).
37.
Morlet-Decarnin
,
L.
,
T.
Divoux
, and
S.
Manneville
, “
Slow dynamics and time–composition superposition in gels of cellulose nanocrystals
,”
J. Chem. Phys.
156
(
21
),
214901
(
2022
).
38.
Calabrese
,
V.
,
S.
Varchanis
,
S. J.
Haward
,
J.
Tsamopoulos
, and
A. Q.
Shen
, “
Structure-property relationship of a soft colloidal glass in simple and mixed flows
,”
J. Colloid Interface Sci.
601
,
454
466
(
2021
).
39.
Nechyporchuk
,
O.
,
M. N.
Belgacem
, and
F.
Pignon
, “
Rheological properties of micro-/nanofibrillated cellulose suspensions: Wall-slip and shear banding phenomena
,”
Carbohydr. Polym.
112
,
432
439
(
2014
).
40.
Divoux
,
T.
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Ann. Rev. Fluid Mech.
48
(
1
),
81
103
(
2016
).
41.
Coussot
,
P.
,
J. S.
Raynaud
,
F.
Bertrand
,
P.
Moucheront
,
J. P.
Guilbaud
,
H. T.
Huynh
,
S.
Jarny
, and
D.
Lesueur
, “
Coexistence of liquid and solid phases in flowing soft-glassy materials
,”
Phys. Rev. Lett.
88
(
21
),
218301
(
2002
).
42.
Pignon
,
F.
,
A.
Magnin
, and
J.-M.
Piau
, “
Thixotropic colloidal suspensions and flow curves with minimum: Identification of flow regimes and rheometric consequences
,”
J. Rheol.
40
(
4
),
573
587
(
1996
).
43.
Raynaud
,
J. S.
,
P.
Moucheront
,
J. C.
Baudez
,
F.
Bertrand
,
J. P.
Guilbaud
, and
P.
Coussot
, “
Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions
,”
J. Rheol.
46
(
3
),
709
732
(
2002
).
44.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
(
20
),
208301
(
2010
).
45.
Rogers
,
S. A.
,
D.
Vlassopoulos
, and
P. T.
Callaghan
, “
Aging, yielding, and shear banding in soft colloidal glasses
,”
Phys. Rev. Lett.
100
(
12
),
128304
(
2008
).
46.
Salmon
,
J.-B.
,
A.
Colin
,
S.
Manneville
, and
F.
Molino
, “
Velocity profiles in shear-banding wormlike micelles
,”
Phys. Rev. Lett.
90
(
22
),
228303
(
2003
).
47.
Callaghan
,
P. T.
, “
Rheo NMR and shear banding
,”
Rheol. Acta
47
(
3
),
243
255
(
2008
).
48.
Manneville
,
S.
,
L.
Bécu
, and
A.
Colin
, “
High-frequency ultrasonic speckle velocimetry in sheared complex fluids
,”
Eur. Phys. J. Appl. Phys.
28
(
3
),
361
373
(
2004
).
49.
Berret
,
J.-F.
, “
Transient rheology of wormlike micelles
,”
Langmuir
13
(
8
),
2227
2234
(
1997
).
50.
Shafiei-Sabet
,
S.
,
W. Y.
Hamad
, and
S. G.
Hatzikiriakos
, “
Rheology of nanocrystalline cellulose aqueous suspensions
,”
Langmuir
28
(
49
),
17124
17133
(
2012
).
51.
Dullaert
,
K.
, and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
(
6
),
1213
1230
(
2005
).
52.
Green
,
H.
, and
R.
Weltmann
, “
Analysis of thixotropy of pigment-vehicle suspensions—Basic principles of the hysteresis loop
,”
Ind. Eng. Chem. Anal. Ed.
15
(
3
),
201
206
(
1943
).
53.
Jamali
,
S.
,
R. C.
Armstrong
, and
G. H.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
(
24
),
248003
(
2019
).
54.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
(
1
),
018304
(
2013
).
55.
Rubio-Hernández
,
F. J.
, and
A. I.
Gómez-Merino
, “
Time dependent mechanical behavior: The viscoelastic loop
,”
Mech. Time-Depend. Mater.
12
(
4
),
357
364
(
2008
).
56.
Wang
,
Y.
, and
R. H.
Ewoldt
, “
Thixotropy, antithixotropy, and viscoelasticity in hysteresis
,”
J. Rheol.
67
(
6
),
1199
1219
(
2023
).
57.
Piette
,
J. H.
,
X.
Jia
, and
S. G.
Hatzikiriakos
, “
Coupling slip and thixotropy to model the transient rheological behaviour of kaolinite suspensions
,”
Rheol. Acta
63
(
8
),
615
628
(
2024
).
58.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Non-Newtonian Fluid Mech.
211
,
31
49
(
2014
).
59.
Zakani
,
B.
, and
D.
Grecov
, “
Yield stress analysis of cellulose nanocrystalline gels
,”
Cellulose
27
(
16
),
9337
9353
(
2020
).
60.
Abbasi Moud
,
A.
,
J.
Poisson
,
Z. M.
Hudson
, and
S. G.
Hatzikiriakos
, “
Yield stress and wall slip of kaolinite networks
,”
Phys. Fluids
33
(
5
),
053105
(
2021
).
61.
Malmir
,
A.
,
J. H.
Piette
,
B.
Derakhshandeh
,
D.
Sztukowski
, and
S. G.
Hatzikiriakos
, “
On the thixotropy of mature fine tailings
,”
Phys. Fluids
35
(
6
),
063103
(
2023
).
62.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in pastes of soft particles: Direct observation and rheology
,”
J. Rheol.
48
(
6
),
1295
1320
(
2004
).
63.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
(
3
),
573
589
(
2002
).
64.
Møller
,
P. C. F.
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
(
4
),
274
283
(
2006
).
65.
Grenard
,
V.
,
T.
Divoux
,
N.
Taberlet
, and
S.
Manneville
, “
Timescales in creep and yielding of attractive gels
,”
Soft Matter
10
(
10
),
1555
1571
(
2014
).
66.
Ragouilliaux
,
A.
,
G.
Ovarlez
,
N.
Shahidzadeh-Bonn
,
B.
Herzhaft
,
T.
Palermo
, and
P.
Coussot
, “
Transition from a simple yield-stress fluid to a thixotropic material
,”
Phys. Rev. E
76
(
5
),
051408
(
2007
).
67.
Ballesta
,
P.
,
N.
Koumakis
,
R.
Besseling
,
W. C. K.
Poon
, and
G.
Petekidis
, “
Slip of gels in colloid–polymer mixtures under shear
,”
Soft Matter
9
(
12
),
3237
3245
(
2013
).
68.
Gulmus
,
S. A.
, and
U.
Yilmazer
, “
Effect of volume fraction and particle size on wall slip in flow of polymeric suspensions
,”
J. Appl. Polym. Sci.
98
(
1
),
439
448
(
2005
).
69.
Mansard
,
V.
,
L.
Bocquet
, and
A.
Colin
, “
Boundary conditions for soft glassy flows: Slippage and surface fluidization
,”
Soft Matter
10
(
36
),
6984
6989
(
2014
).
70.
Walls
,
H. J.
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
(
4
),
847
868
(
2003
).
71.
Abbasi Moud
,
A.
,
J.
Piette
,
M.
Danesh
,
G. C.
Georgiou
, and
S. G.
Hatzikiriakos
, “
Apparent slip in colloidal suspensions
,”
J. Rheol.
66
(
1
),
79
90
(
2022
).
72.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
(
35
),
6619
6644
(
2014
).
73.
Britton
,
M. M.
, and
P. T.
Callaghan
, “
Two-phase shear band structures at uniform stress
,”
Phys. Rev. Lett.
78
(
26
),
4930
4933
(
1997
).
74.
Dimitriou
,
C. J.
,
L.
Casanellas
,
T. J.
Ober
, and
G. H.
McKinley
, “
Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear
,”
Rheol. Acta
51
(
5
),
395
411
(
2012
).
75.
Ovarlez
,
G.
,
S.
Rodts
,
X.
Chateau
, and
P.
Coussot
, “
Phenomenology and physical origin of shear localization and shear banding in complex fluids
,”
Rheol. Acta
48
(
8
),
831
844
(
2009
).
76.
Rodts
,
S.
,
J. C.
Baudez
, and
P.
Coussot
, “
From ‘discrete’ to ‘continuum’ flow in foams
,”
Europhys. Lett.
69
(
4
),
636
642
(
2005
).
77.
Mueth
,
D. M.
,
G. F.
Debregeas
,
G. S.
Karczmar
,
P. J.
Eng
,
S. R.
Nagel
, and
H. M.
Jaeger
, “
Signatures of granular microstructure in dense shear flows
,”
Nature
406
(
6794
),
385
389
(
2000
).
78.
Geri
,
M.
,
B.
Saint-Michel
,
T.
Divoux
,
G. H.
McKinley
, and
S.
Manneville
, “
Interplay between wall slip and shear banding in a thixotropic yield stress fluid
,”
Soft Matter
20
(
29
),
5769
5780
(
2024
).
79.
Malkin
,
A. Y.
, and
S. A.
Patlazhan
, “
Wall slip for complex liquids—Phenomenon and its causes
,”
Adv. Colloid Interface Sci.
257
,
42
57
(
2018
).
80.
Cloitre
,
M.
, and
R. T.
Bonnecaze
, “
A review on wall slip in high solid dispersions
,”
Rheol. Acta
56
(
3
),
283
305
(
2017
).
81.
Hu
,
X.
,
D.
Yin
,
X.
Chen
, and
G.
Xiang
, “
Experimental investigation and mechanism analysis: Effect of nanoparticle size on viscosity of nanofluids
,”
J. Mol. Liq.
314
,
113604
(
2020
).
82.
Liu
,
Y.
,
Q.
Zhang
, and
R.
Liu
, “
Effect of particle size distribution and shear rate on relative viscosity of concentrated suspensions
,”
Rheol. Acta
60
(
12
),
763
774
(
2021
).
You do not currently have access to this content.