Applications often expose wormlike micelle solutions to a very wide range of shear and temperature conditions. The two-species model presented in Part I [Salipante et al., J. Rheol. 68 (2024)] describes the nonlinear rheology over a wide range of shear rates. Here, we compare the model predictions to measurements using a combination of microcapillary and rotational rheology to measure the viscosity of surfactant solutions across seven decades of shear rate and five decades of viscosity. The effect of temperature is studied between 20 and 60  °C for different surfactant concentrations. Model parameters are determined from both small-amplitude shear measurements and fitting to the nonlinear data. Under shear stress, the model predicts due to hindered combination kinetics that the average micelle length decreases from several micrometers to a few hundred nanometers. At sufficiently high stress, the micelle shear rheology exhibits a transition from entangled wormlike behavior to a dilute rod rheology in agreement with the model. Transient stress-growth measurements exhibit a large overshoot, which is rather well predicted by the model with hindered combination rate. Microcapillary flow birefringence also is adequately predicted by the model, confirming the accuracy of its predicted micelle lengths and exhibiting a marked change in stress-optic response at the transition between entangled polymers and dilute rods. The relaxation of retardance after flow cessation follows model predictions that include micelle-micelle interactions, which are sensitive to the rotational diffusivity and length. These methods can be applied broadly to explore relationships between composition and performance.

1.
Rothstein
,
J. P.
, and
H.
Mohammadigoushki
, “
Complex flows of viscoelastic wormlike micelle solutions
,”
J. Non-Newtonian Fluid Mech.
285
,
104382
(
2020
).
2.
Cates
,
M. E.
, “
Dynamics of living polymers and flexible surfactant micelles: Scaling laws for dilution
,”
J. Phys.
49
,
1593
1600
(
1988
).
3.
Berret
,
J. F.
,
J.
Appell
, and
G.
Porte
, “
Linear rheology of entangled wormlike micelles
,”
Langmuir
9
,
2851
2854
(
1993
).
4.
Pipe
,
C. J.
,
T. S.
Majmudar
, and
G. H.
McKinley
, “
High shear rate viscometry
,”
Rheol. Acta
47
,
621
642
(
2008
).
5.
Raghavan
,
S. R.
, and
E. W.
Kaler
, “
Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails
,”
Langmuir
17
,
300
306
(
2001
).
6.
Sato
,
T.
, and
R. G.
Larson
, “
Nonlinear rheology of entangled wormlike micellar solutions predicted by a micelle-slip-spring model
,”
J. Rheol.
66
,
639
656
(
2022
).
7.
Willenbacher
,
N.
,
C.
Oelschlaeger
,
M.
Schopferer
,
P.
Fischer
,
F.
Cardinaux
, and
F.
Scheffold
, “
Broad bandwidth optical and mechanical rheometry of wormlike icelle solutions
,”
Phys. Rev. Lett.
99
,
068302
(
2007
).
8.
Eberle
,
A. P.
, and
L.
Porcar
, “
Flow-SANS and Rheo-SANS applied to soft matter
,”
Curr. Opin. Colloid Interf. Sci.
17
,
33
43
(
2012
).
9.
Weston
,
J.
,
D.
Seeman
,
D.
Blair
,
P.
Salipante
,
S.
Hudson
, and
K.
Weigandt
, “
Simultaneous slit rheometry and in situ neutron scattering
,”
Rheol. Acta
57
,
241
250
(
2018
).
10.
Murphy
,
R. P.
,
Z. W.
Riedel
,
M. A.
Nakatani
,
P. F.
Salipante
,
J. S.
Weston
,
S. D.
Hudson
, and
K. M.
Weigandt
, “
Capillary RheoSANS: Measuring the rheology and nanostructure of complex fluids at high shear rates
,”
Soft Matter
16
,
6285
6293
(
2020
).
11.
Wheeler
,
E. K.
,
P.
Fischer
, and
G. G.
Fuller
, “
Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution
,”
J. Non-Newtonian Fluid Mech.
75
,
193
208
(
1998
).
12.
Lerouge
,
S.
, and
J.-F.
Berret
, “
Shear-induced transitions and instabilities in surfactant wormlike micelles
,”
Adv. Polym. Sci.
230
,
1
71
(
2010
).
13.
Haward
,
S. J.
,
F. J.
Galindo-Rosales
,
P.
Ballesta
, and
M. A.
Alves
, “
Spatiotemporal flow instabilities of wormlike micellar solutions in rectangular microchannels
,”
Appl. Phys. Lett.
104
,
124101
(
2014
).
14.
Johnson
,
M.
, and
D.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
,
255
270
(
1977
).
15.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation - dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
16.
Vasquez
,
P. A.
,
G. H.
McKinley
, and
L. P.
Cook
, “
A network scission model for wormlike micellar solutions I: Model formulation and homogeneous flow predictions
,”
J. Non-Newtonian Fluid Mech.
144
,
122
139
(
2007
).
17.
Varchanis
,
S.
,
S. J.
Haward
,
C. C.
Hopkins
,
J.
Tsamopoulos
, and
A. Q.
Shen
, “
Evaluation of constitutive models for shear-banding wormlike micellar solutions in simple and complex flows
,”
J. Non-Newtonian Fluid Mech.
307
,
104855
(
2022
).
18.
Peterson
,
J. D.
, and
L. G.
Leal
, “
Predictions for flow-induced scission in well-entangled living polymers: The “living Rolie-Poly” model
,”
J. Rheol.
65
,
959
982
(
2021
).
19.
Hommel
,
R. J.
, and
M. D.
Graham
, “
Constitutive modeling of dilute wormlike micelle solutions: Shear-induced structure and transient dynamics
,”
J. Non-Newtonian Fluid Mech.
295
,
104606
(
2021
).
20.
Hudson
,
S. D.
,
P.
Sarangapani
,
J. A.
Pathak
, and
K. B.
Migler
, “
A microliter capillary rheometer for characterization of protein solutions
,”
J. Pharm. Sci.
104
,
678
685
(
2015
).
21.
Salipante
,
P. F.
,
V. L.
Dharmaraj
, and
S. D.
Hudson
, “
Entrance effects and high shear rate rheology of shear-banding wormlike micelle fluids in a microcapillary flow
,”
J. Rheol.
64
,
481
492
(
2020
).
22.
Salipante
,
P. F.
,
S.
Kuei
, and
S. D.
Hudson
, “
A small-volume microcapillary rheometer
,”
Rheol. Acta
61
,
309
317
(
2022
).
23.
Padding
,
J. T.
,
E. S.
Boek
, and
W. J.
Briels
, “
Dynamics and rheology of wormlike micelles emerging from particulate computer simulations
,”
J. Chem. Phys.
129
,
74903
(
2008
).
24.
Lang
,
C.
,
J.
Kohlbrecher
,
L.
Porcar
,
A.
Radulescu
,
K.
Sellinghoff
,
J. K. G.
Dhont
, and
M. P.
Lettinga
, “
Microstructural understanding of the length- and stiffness-dependent shear thinning in semidilute colloidal rods
,”
Macromolecules
52
,
9604
9612
(
2019
).
25.
Certain commercial equipment, instruments, software, or materials are identified in this presentation to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
26.
D’Urso
,
B.
, “Multiprocess system for virtual instruments in python,” in SciPy Conference, Pasadena, CA, August 18–23, 2009 (SciPy.org. Austin, TX, 2010).
27.
Morrison
,
F.
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
), pp.
387
394
.
28.
Onuma
,
T.
, and
Y.
Otani
, “
A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz
,”
Opt. Commun.
315
,
69
73
(
2014
).
29.
Makhloufi
,
R.
,
E.
Hirsch
,
S. J.
Candau
,
W.
Binana-Limbele
, and
R.
Zana
, “
Fluorescence quenching and elastic and quasi-elastic light scattering studies of elongated micelles in solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate
,”
J. Phys. Chem.
93
,
8095
8101
(
1989
).
30.
Lutz-Bueno
,
V.
,
R.
Pasquino
,
M.
Liebi
,
J.
Kohlbrecher
, and
P.
Fischer
, “
Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: Influence of surfactant headgroup structure and its counterion
,”
Langmuir
32
,
4239
4250
(
2016
).
31.
Mackintosh
,
F. C.
,
A.
Safran
, and
P. A.
Pincus
, “
Self-assembly of linear aggregates: The effect of electrostatics on growth
,”
Europhys. Lett.
12
,
697
702
(
1990
).
32.
Tan
,
G.
, and
R. G.
Larson
, “
Quantitative modeling of threadlike micellar solution rheology
,”
Rheol. Acta
61
,
443
457
(
2022
).
33.
“GitHub-Larson-group-umich/pointer-algorithm: Pointer-Algorithm: A mesoscopic simulation method for accurate rheology of surfactant solutions.”
34.
Tan
,
G.
,
W.
Zou
,
M.
Weaver
, and
R. G.
Larson
, “
Determining threadlike micelle lengths from rheometry
,”
J. Rheol.
65
,
59
71
(
2021
).
35.
Zou
,
W.
, and
R. G.
Larson
, “
A mesoscopic simulation method for predicting the rheology of semi-dilute wormlike micellar solutions
,”
J. Rheol.
58
,
681
721
(
2014
).
36.
Turner
,
M. S.
, and
M. E.
Cates
, “
Linear viscoelasticity of living polymers: A quantitative probe of chemical relaxation times
,”
Langmuir
7
,
1590
1594
(
1991
).
37.
Gittes
,
F.
, and
F. C.
MacKintosh
, “
Dynamic shear modulus of a semiflexible polymer network
,”
Phys. Rev. E
58
,
R1241
(
1998
).
38.
Das
,
N. C.
,
H.
Cao
,
H.
Kaiser
,
G. T.
Warren
,
J. R.
Gladden
, and
P. E.
Sokol
, “
Shape and size of highly concentrated micelles in CTAB/NaSal solutions by small angle neutron scattering (SANS)
,”
Langmuir
28
,
11962
11968
(
2012
).
39.
Helgeson
,
M. E.
,
T. K.
Hodgdon
,
E. W.
Kaler
, and
N. J.
Wagner
, “
A systematic study of equilibrium structure, thermodynamics, and rheology of aqueous CTAB/NaNO3 wormlike micelles
,”
J. Colloid Interface Sci.
349
,
1
12
(
2010
).
40.
Aswal
,
V. K.
,
P. S.
Goyal
, and
P.
Thiyagarajan
, “
Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions
,”
J. Phys. Chem. B
102
,
2469
2473
(
1998
).
41.
Herle
,
V.
,
J.
Kohlbrecher
,
B.
Pfister
,
P.
Fischer
, and
E. J.
Windhab
, “
Alternating vorticity bands in a solution of wormlike micelles
,”
Phys. Rev. Lett.
99
,
158302
(
2007
).
42.
Granek
,
R.
, and
M. E.
Cates
, “
Stress relaxation in living polymers: Results from a Poisson renewal model
,”
J. Chem. Phys
96
,
4758
4767
(
1992
).
43.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University
,
Oxford
,
1986
).
44.
Larson
,
R. G.
,
T.
Sridhar
,
L. G.
Leal
,
G. H.
McKinley
,
A. E.
Likhtman
, and
T. C. B.
McLeish
, “
Definitions of entanglement spacing and time constants in the tube model
,”
J. Rheol.
47
,
809
818
(
2003
).
45.
Cates
,
M. E.
, and
S. J.
Candau
, “Statics and dynamics of worm-like surfactant micelles” (1990).
46.
Batchelor
,
G. K.
, “
Slender-body theory for particles of arbitrary cross-section in Stokes flow
,”
J. Fluid Mech.
44
,
419
440
(
1970
).
47.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
48.
Candau
,
S. J.
,
A.
Khatory
,
F.
Lequeux
, and
F.
Kern
, “
Rheological behaviour of wormlike micelles : Effect of salt content
,”
Le Journal de Physique IV
03
,
C1-197
C1-209
(
1993
).
49.
Costanzo
,
S.
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
,
3925
3935
(
2016
).
50.
Gaudino
,
D.
,
S.
Costanzo
,
G.
Ianniruberto
,
N.
Grizzuti
, and
R.
Pasquino
, “
Linear wormlike micelles behave similarly to entangled linear polymers in fast shear flows
,”
J. Rheol.
64
,
879
888
(
2020
).
51.
Shikata
,
T.
,
S. J.
Dahman
, and
D. S.
Pearson
, “
Rheo-optical behavior of wormlike micelles
,”
Langmuir
10
,
3470
3476
(
1994
).
52.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of rod-like macromolecules in concentrated solution. Part 2
,”
J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys.
74
,
918
932
(
1978
).
53.
Fuller
,
G. G.
,
Optical Rheometry of Complex Fluids
(
Oxford University
,
New York
,
1995
).
54.
Helgeson
,
M. E.
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
756
(
2009
).
55.
Pathak
,
J. A.
, and
S. D.
Hudson
, “
Rheo-optics of equilibrium polymer solutions: Wormlike micelles in elongational flow in a microfluidic cross-slot
,”
Macromolecules
39
,
8782
8792
(
2006
).
56.
Pipe
,
C. J.
,
N. J.
Kim
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. H.
McKinley
, “
Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions
,”
J. Rheol.
54
,
881
913
(
2010
).
57.
Tang
,
M. Y.
,
J. F.
Fellers
, and
J. S.
Lin
, “
New treatment of the theory for small-angle x-ray scattering with applications to polystyrene crazes
,”
J. Polym. Sci. Polym. Phys. Ed.
22
,
2215
2241
(
1984
).
58.
Fernandez-Ballester
,
L.
,
D. W.
Thurman
, and
J. A.
Kornfield
, “
Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow
,”
J. Rheol.
53
,
1229
1254
(
2009
).
59.
Shaqfeh
,
E. S.
, and
G. H.
Fredrickson
, “
The hydrodynamic stress in a suspension of rods
,”
Phys. Fluids A
2
,
7
24
(
1990
).
60.
Lang
,
C.
, and
M. P.
Lettinga
, “
Shear flow behavior of bidisperse rodlike colloids
,”
Macromolecules
53
,
2662
2668
(
2020
).
61.
Lettinga
,
M. P.
, “Personal communication,”.
62.
Corona
,
P. T.
,
K.
Dai
,
M. E.
Helgeson
, and
L. G.
Leal
, “
Testing orientational closure approximations in dilute and non-dilute suspensions with Rheo-SANS
,”
J. Non-Newtonian Fluid Mech.
315
,
105014
(
2023
).
63.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Vol. 1, Fluid Mechanics
, 2nd ed. (
John Wiley and Sons
,
New York
,
1987
).
64.
Dhont
,
J. K. G.
, and
W. J.
Briels
, “
Viscoelasticity of suspensions of long, rigid rods
,”
Colloids Surf. A
213
,
131
156
(
2003
).
65.
Calabrese
,
M. A.
,
S. A.
Rogers
,
R. P.
Murphy
, and
N. J.
Wagner
, “
The rheology and microstructure of branched micelles under shear
,”
J. Rheol.
59
,
1299
1328
(
2015
).
66.
Mcleish
,
T. C. B.
,
R. G.
Larson
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
67.
Cromer
,
M.
,
L. P.
Cook
, and
G. H.
McKinley
, “
Extensional flow of wormlike micellar solutions
,”
Chem. Eng. Sci.
64
,
4588
4596
(
2009
).
68.
Walker
,
L. M.
,
P.
Moldenaers
, and
J. F.
Berret
, “
Macroscopic response of wormlike micelles to elongational flow
,”
Langmuir
12
,
6309
6314
(
1996
).
69.
O’Shaughnessy
,
B.
, and
J.
Yu
, “
Rheology of wormlike micelles: Two universality classes
,”
Phys. Rev. Lett.
74
,
4329
4332
(
1995
).
70.
Salipante
,
P. F.
,
M.
Cromer
, and
S. D.
Hudson
, “
Two-species model for nonlinear flow of wormlike micelle solutions. I: Model
,”
J. Rheol.
68
, 873–894 (
2024
).
You do not currently have access to this content.