The deformability of human red blood cells (RBCs), which comprise almost 99% of the cells in whole blood, is largely related not only to pathophysiological blood flow but also to the levels of intracellular compounds. Therefore, statistical estimates of the deformability of individual RBCs are of paramount importance in the clinical diagnosis of blood diseases. Although the microscale hydrodynamic interactions of individual RBCs lead to non-Newtonian blood rheology, there is no established method to estimate individual RBC deformability from the rheological data of RBC suspensions, and the possibility of this estimation has not been proven. To address this issue, we conducted an integrated analysis of a model of the rheology of RBC suspensions, coupled with macrorheological data of human RBCs suspended in plasma. Assuming a nonlinear curve of the relative viscosity of the suspensions as a function of the cell volume fraction, the statistical average of the membrane shear elasticity was estimated for individual intact RBCs or hardened RBCs. Both estimated values reproduced well the experimentally observed shear-thinning non-Newtonian behavior in these suspensions. We hereby conclude that our complementary approach makes it possible to estimate the statistical average of individual RBC deformability from macrorheological data obtained with usual rheometric tests.

1.
Wakeman
,
L.
,
S.
Al-Ismail
,
A.
Benton
,
A.
Beddall
,
A.
Gibbs
,
S.
Hartnell
,
K.
Morris
, and
R.
Munro
, “
Robust, routine haematology reference ranges for healthy adults
,”
Int. J. Lab. Hematol.
29
,
279
283
(
2007
).
2.
Ito
,
H.
,
R.
Murakami
,
S.
Sakuma
,
C.-H. D.
Tsai
,
T.
Gutsmann
,
K.
Brandenburg
,
J. M. B.
Pöschl
,
F.
Arai
,
M.
Kaneko
, and
M.
Tanaka
, “
Mechanical diagnosis of human eryhrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling
,”
Sci. Rep.
7
,
43134
(
2017
).
3.
Saadat
,
A.
,
D. A.
Huyke
,
D. I.
Oyarzun
,
P. V.
Escobar
,
I. H.
Øvreeide
,
E. S. G.
Shaqfeh
, and
J. G.
Santiago
, “
A system for the high-throughput measurement of the shear modulus distribution of human red blood cells
,”
Lab Chip
20
,
2927
2936
(
2020
).
4.
Isiksacan
,
Z.
,
A.
D’Alessandro
,
S. M.
Wolf
,
D. H.
McKenna
,
S. N.
Tessier
,
E.
Kucukal
,
A. A.
Gokaltun
,
N.
William
,
R. D.
Sandlin
,
J.
Bischof
,
N.
Mohandas
,
M. P.
Busch
,
C.
Elbuken
,
U. A.
Gurkan
,
M.
Toner
,
J. P.
Acker
,
M. L.
Yarmush
, and
O. B.
Usta
, “
Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine
,”
Proc. Natl. Acad. Sci. U.S.A.
120
,
e2115616120
(
2023
).
5.
Ito
,
H.
, and
M.
Kaneko
, “
On-chip cell manipulation and applications to deformability measurements
,”
Robomech J.
7
,
3
(
2020
).
6.
Parthasarathi
,
K.
, and
H. H.
Lipowsky
, “
Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability
,”
Am. J. Physiol. Heart Circ. Physiol.
46
,
H2145
H2157
(
1999
).
7.
Baskurt
,
O. K.
,
O.
Yalcin
, and
H. J.
Meiselman
, “
Hemorheology and vascular control mechanisms
,”
Clin. Hemorheol. Microcirc.
30
,
169
178
(
2004
).
8.
Chien
,
S.
,
S.
Usami
, and
J. F.
Bertles
, “
Abnormal rheology of oxygenated blood in sickle cell anemia
,”
J. Clin. Invest.
49
,
623
634
(
1970
).
9.
Manwani
,
D.
, and
P. S.
Frenette
, “
Vaso-occlusion in sickle cell disease: Pathophysiology and novel targeted therapies
,”
Blood
122
,
3822
3898
(
2013
).
10.
Safeukui
,
I.
,
J.-M.
Correas
,
V.
Brousse
,
D.
Hirt
,
G.
Deplaine
,
S.
Mulé
,
M.
Lesurtel
,
N.
Goasguen
,
A.
Sauvanet
,
A.
Couvelard
,
S.
Kerneis
,
H.
Khun
,
I.
Vigan-Womas
,
C.
Ottone
,
T. J.
Molina
,
J.-M.
Tréluyer
,
O.
Mercereau-Puijalon
,
G.
Milon
,
P. H.
David
, and
P. A.
Buffe
, “
Retention of plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen
,”
Blood
112
,
2520
2528
(
2008
).
11.
Suresh
,
S.
,
J.
Spatz
,
J. P.
Mills
,
A.
Micoulet
,
M.
Dao
,
C. T.
Lim
,
M.
Beil
, and
T.
Surfferlein
, “
Connections between single-cell biomechanics and human diseases states: Gastrointestinal cancer and malaria
,”
Acta Biomater.
1
,
15
30
(
2005
).
12.
Agrawal
,
R.
,
T.
Smart
,
J.
Nobre-Cardoso
,
C.
Richards
,
R.
Bhatnagar
,
A.
Tufail
,
D.
Shima
,
P. H.
Jones
, and
C.
Pavesio
, “
Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique
,”
Sci. Rep.
6
,
15873
(
2016
).
13.
Connes
,
P.
,
Y.
Lamarre
,
X.
Waltz
,
S. K.
Ballas
,
N.
Lemonne
,
M.
Etienne-Julan
,
O.
Hue
,
M.-D.
Hardy-Dessources
, and
M.
Romana
, “
Haemolysis and abnormal haemorheology in sickle cell anaemi
,”
Br. J. Haematol.
165
,
564
572
(
2014
).
14.
Eguchi
,
Y.
,
S.
Shimizu
, and
Y.
Tsujimoto
, “
Intracellular ATP levels determine cell death fate by apoptosis or necrosis
,”
Cancer Res.
57
,
1835
1840
(
1997
).
15.
Forsyth
,
A. M.
,
J.
Wan
,
P. D.
Owrutsky
,
M.
Abkarian
, and
H. A.
Stone
, “
Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10986
10991
(
2011
).
16.
Teruya
,
T.
,
Y.-J.
Chen
,
H.
Kondoh
,
Y.
Fukuji
, and
M.
Yanagida
, “
Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2022857118
(
2021
).
17.
Chien
,
S.
, “
Red cell deformability and its relevance to blood flow
,”
Ann. Rev. Physiol.
49
,
177
192
(
1987
).
18.
Fregin
,
B.
,
F.
Czerwinski
,
D.
Biedenweg
,
S.
Girardo
,
S.
Gross
,
K.
Aurich
, and
O.
Otto
, “
High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry
,”
Nat. Commun.
10
,
415
(
2019
).
19.
Toepfner
,
N.
,
C.
Herold
,
O.
Otto
,
P.
Rosendahl
,
A.
Jacobi
,
M.
Kräter
,
J.
Stächele
,
L.
Menschner
,
M.
Herbig
,
L.
Ciuffreda
,
L.
Ranford-Cartwright
,
M.
Grzybek
,
Ü.
Coskun
,
E.
Reithuber
,
G.
Garriss
,
P.
Mellroth
,
B.
Henriques-Normark
,
N.
Tregay
,
M.
Suttorp
,
M.
Bornhäuser
,
E. R.
Chilvers
,
R.
Berner
, and
J.
Guck
, “
Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
,”
eLife
7
,
e29213
(
2018
).
20.
Otto
,
O.
,
P.
Rosendahl
,
A.
Mietke
,
S.
Golfier
,
C.
Herold
,
D.
Klaue
,
S.
Girardo
,
S.
Pagliara
,
A.
Ekpenyong
,
A.
Jacobi
,
M.
Wobus
,
N.
Töpfner
,
U. F.
Keyser
,
J.
Mansfeld
,
E.
Fischer-Friedrich
, and
J.
Guck
, “
Real-time deformability cytometry: On-the-fly cell mechanical phenotyping
,”
Nat. Methods
12
,
199
202
(
2015
).
21.
Lamoureux
,
E. S.
,
E.
Islamzada
,
M. V. J.
Wiens
,
K.
Matthews
,
S. P.
Duffyabe
, and
H.
Ma
, “
Assessing red blood cell deformability from microscopy images using deep learning
,”
Lab Chip
22
,
26
36
(
2022
).
22.
Rizzuto
,
V.
,
A.
Mencattini
,
B.
Álvarez-González
,
D. D.
Giuseppe
,
E.
Martinelli
,
D.
Beneitez-Pastor
,
M. D. M.
Mañú-Pereira
,
M. J.
Lopez-Martinez
, and
J.
Samitier
, “
Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia
,”
Sci. Rep.
11
,
13553
(
2021
).
23.
Guncar
,
G.
,
M.
Kukar
,
M.
Notar
,
M.
Brvar
,
P.
Cernelc
,
M.
Notar
, and
M.
Notar
, “
An application of machine learning to haematological diagnosis
,”
Sci. Rep.
8
,
411
(
2018
).
24.
Wells
,
R. E.
, and
E. W.
Merrill
, “
Shear rate dependence of the viscosity of whole blood and plasma
,”
Science
133
,
763
764
(
1961
).
25.
Dintenfass
,
L.
, “
Internal viscosity of the red cell and a blood viscosity equation
,”
Nature
219
,
956
958
(
1968
).
26.
Chien
,
S.
, “
Shear dependence of effective cell volume as a determinant of blood viscosity
,”
Science
168
,
977
979
(
1970
).
27.
Chien
,
S.
, “Biophysical behavior of red cells in suspensions,” in The Red Blood Cell, edited by D. M. Surgenor (Academic, New York, 1975), Chap. 26, pp. 1032–1135.
28.
Merrill
,
E. W.
,
E. R.
Gilliland
,
T. S.
Lee
, and
E. W.
Salzman
, “
Blood rheology: Effect of fibrinogen deduced by addition
,”
Circ. Res.
18
,
437
446
(
1966
).
29.
Schmid-Schönbein
,
H.
, and
R.
Wells
, “
Fluid drop-like transition of erythrocytes under shear
,”
Science
165
,
288
291
(
1969
).
30.
Fischer
,
T. M.
,
M.
Stöhr-Liesen
, and
H.
Schmid-Schönbein
, “
The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow
,”
Science
202
,
894
896
(
1978
).
31.
Snabre
,
P.
,
M.
Bitbol
, and
P.
Mills
, “
Cell disaggregation behavior in shear flow
,”
Biophys. J.
51
,
795
807
(
1987
).
32.
Fischer
,
T. M.
, “
On the energy dissipation in a tank-treading human red blood cell
,”
Biophys. J
32
,
863
868
(
1980
).
33.
Omori
,
T.
,
T.
Ishikawa
,
Y.
Imai
, and
T.
Yamaguchi
, “
Hydrodynamic interaction between two red blood cells in simple shear flow: Its impact on the rheology of a semi-dilute suspension
,”
Comput. Mech.
54
,
933
941
(
2014
).
34.
Fedosov
,
D. A.
,
W.
Panb
,
B.
Caswell
,
G.
Gomppera
, and
G. E.
Karniadakis
, “
Predicting human blood viscosity in silico
,”
Proc. Natl. Acad. Sci.
108
,
11772
11777
(
2011
).
35.
Lanotte
,
L.
,
J.
Mauer
,
S.
Mendez
,
D. A.
Fedosov
,
J.-M.
Fromental
,
V.
Claveria
,
F.
Nicoul
,
G.
Gompper
, and
M.
Abkarian
, “
Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
13289
13294
(
2016
).
36.
Takeishi
,
N.
,
M. E.
Rosti
,
Y.
Imai
,
S.
Wada
, and
L.
Brandt
, “
Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells
,”
J. Fluid Mech.
872
,
818
849
(
2019
).
37.
Takeishi
,
N.
,
M. E.
Rosti
,
N.
Yokoyama
, and
L.
Brandt
, “
Viscoelasticity of suspension of red blood cells under oscillatory shear flow
,”
Phys. Fluids
36
,
041905
(
2024
).
38.
Kihm
,
A.
,
L.
Kaestner
,
C.
Wagner
, and
S.
Quint
, “
Classification of red blood cell shapes in flow using outlier tolerant machine learning
,”
PLoS Comput. Biol.
14
,
e1006278
(
2018
).
39.
Abay
,
A.
,
G.
Simionato
,
R.
Chachanidze
,
A.
Bogdanova
,
L.
Hertz
,
P.
Bianchi
,
E.
van den Akker
,
M.
von Lindern
,
M.
Leonetti
,
G.
Minetti
,
C.
Wagner
, and
L.
Kaestner
, “
Glutaraldehyde—A subtle tool in the investigation of healthy and pathologic red blood cells
,”
Front. Physiol.
10
,
514
(
2019
).
40.
Kuck
,
L.
,
A. P.
McNamee
, and
M. J.
Simmonds
, “
Impact of small fractions of abnormal erythrocytes on blood rheology
,”
Microvasc. Res.
139
,
104261
(
2022
).
41.
Squier
,
C. A.
,
J. S.
Hart
, and
A.
Churchland
, “
Changes in red blood cell volume on fixation in glutaraldehyde solutions
,”
Histochemistry
48
,
7
16
(
1976
).
42.
Brooks
,
D. E.
,
J. W.
Goodwin
, and
G. V.
Seaman
, “
Interactions among erythrocytes under shear
,”
J. Appl. Physiol.
28
,
172
177
(
1970
).
43.
Goldsmith
,
H. L.
, “The microrheology of human erythrocyte suspensions,” in Theoretical and Applied Mechanics: Proceedings of 13th IUTAM Congress, edited by E. Becker and G. K. Mikhailov (Springer, New York, 1972), pp. 85–103.
44.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “Experimental challenges of shear rheology: How to avoid bad data,” in Complex Fluids in Biological Systems, edited by S. E. Spagnolie (Springer, New York, 2015), Chap. 6, pp. 207–241.
45.
Skalak
,
R.
,
A.
Tozeren
,
R. P.
Zarda
, and
S.
Chien
, “
Strain energy function of red blood cell membranes
,”
Biophys. J.
13
,
245
264
(
1973
).
46.
Barthès-Biesel
,
D.
,
A.
Diaz
, and
E.
Dheni
, “
Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation
,”
J. Fluid Mech.
460
,
211
222
(
2002
).
47.
Li
,
J.
,
M.
Dao
,
C. T.
Lim
, and
S.
Suresh
, “
Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte
,”
Biophys. J.
88
,
3707
3719
(
2005
).
48.
Puig-de-Morales-Marinkovic
,
M.
,
K. T.
Turner
,
J. P.
Butler
,
J. J.
Fredberg
, and
S.
Suresh
, “
Viscoelasticity of the human red blood cell
,”
Am. J. Physiol. Cell Physiol.
293
,
C597
C605
(
2007
).
49.
Takeishi
,
N.
,
Y.
Imai
,
K.
Nakaaki
,
T.
Yamaguchi
, and
T.
Ishikawa
, “
Leukocyte margination at arteriole shear rate
,”
Physiol. Rep.
2
,
e12037
(
2014
).
50.
Tomaiuolo
,
G.
, “
Biomechanical properties of red blood cells in health and disease towards microfluidics
,”
Biomicrofluidics
8
,
051501
(
2014
).
51.
Takeishi
,
N.
,
H.
Ito
,
M.
Kaneko
, and
S.
Wada
, “
Deformation of a red blood cell in a narrow rectangular microchannel
,”
Micromachines
10
,
199
(
2019
).
52.
Dao
,
M.
,
J.
Li
, and
S.
Suresh
, “
Molecularlly based analysis of deformation of spectrin network and human erythrocyte
,”
Mater. Sci. Eng., C
26
,
1232
1244
(
2006
).
53.
Harkness
,
J.
, and
R. B.
Whittington
, “
Blood-plasma viscosity: An approximate temperature-invariant arising from generalised concepts
,”
Biorheology
6
,
169
187
(
1970
).
54.
Chen
,
S.
, and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flow
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
55.
Peskin
,
C. S.
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
56.
Yokoi
,
K.
, “
Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm
,”
J. Comput. Phys.
226
,
1985
2002
(
2007
).
57.
Unverdi
,
S. O.
, and
G.
Tryggvason
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
,
25
37
(
1992
).
58.
Freund
,
J. B.
, “
Leukocyte margination in a model microvessel
,”
Phys. Fluids
19
,
023301
(
2007
).
59.
Takeishi
,
N.
,
H.
Yamashita
,
T.
Omori
,
N.
Yokoyama
,
S.
Wada
, and
M.
Sugihara-Seki
, “
Inertial migration of red blood cells under a Newtonian fluid in a circular channel
,”
J. Fluid Mech.
952
,
A35
(
2022
).
60.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
61.
Pozrikidis
,
C.
, “The boundary integral equations,” in Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University, Cambridge, 1992), Chap. 2, pp. 45–58.
62.
Baskurt
,
O. K.
,
M. R.
Hardeman
,
M. W.
Rampling
, and
H. J.
Meiselman
, “Hemorheology,” in Handbook of Hemorheology and Hemodynamics (IOS, Amsterdam, 2007), Chap. II, pp. 45–71.
63.
Brust
,
M.
,
C.
Schaefer
,
R.
Doerr
,
L.
Pan
,
M.
Garcia
,
P. E.
Arratia
, and
C.
Wagner
, “
Rheology of human blood plasma: Viscoelastic versus Newtonian behavior
,”
Phys. Rev. Lett.
110
,
078305
(
2013
).
64.
Rodrigues
,
T.
,
R.
Mota
,
L.
Gales
, and
L.
Campo-Deaño
, “
Understanding the complex rheology of human blood plasma
,”
J. Rheol.
66
,
761
774
(
2022
).
65.
Varchanis
,
S.
,
Y.
Dimakopoulos
,
C.
Wagner
, and
J.
Tsampoulos
, “
How viscoelastic is human blood plasma?
,”
Soft Matter
54
,
4238
4251
(
2018
).
66.
Abbasi
,
M.
,
A.
Farutin
,
H.
Ez-Zahraouy
,
A.
Benyoussef
, and
C.
Misbah
, “
Erythrocyte-eruythrocyte aggregation dynamics under shear flow
,”
Phys. Rev. Fluids
6
,
023602
(
2021
).
67.
Cheng
,
N.-S.
, “
Formula for the viscosity of a glycerol-water mixture
,”
Ind. Eng. Chem. Res.
47
,
3285
3288
(
2008
).
You do not currently have access to this content.