The rheological characterization of complex liquids is of great importance in many applications. Among the properties that can be measured, the relaxation time has great relevance, as it provides a measure of fluid elasticity. In this work, we propose a novel method to estimate the longest relaxation time of viscoelastic fluids by applying machine learning to microfluidics. Specifically, we train a long-short term memory (LSTM) neural network to identify the Weissenberg number that characterizes the dynamics of trains of rigid particles suspended in a viscoelastic liquid flowing in a cylindrical microchannel. We first study the effect of the Weissenberg number on the evolution of the microstructure through numerical simulations. An in silico dataset consisting of the distributions of the interparticle distances at different channel sections is built and used to train the network. The performance of the LSTM model is tested on both classification and regression problems. The proposed method is nonintrusive, requires a simple setup, and can in principle be used to measure other properties of the fluid.

1.
Ferry
,
J. D.
,
Viscoelastic Properties of Polymers
, 3rd ed. (
John Wiley & Sons
,
New York
,
1980
).
2.
Denn
,
M. M.
, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer, Cambridge Series in Chemical Engineering (Cambridge University, Cambridge, 2008).
3.
Gallegos
,
C.
, and
J. M.
Franco
, “
Rheology of food, cosmetics and pharmaceuticals
,”
Curr. Opin. Colloid Interface Sci.
4
,
288
293
(
1999
).
4.
Tabilo-Munizaga
,
G.
, and
G. V.
Barbosa-Cánovas
, “
Rheology for the food industry
,”
J. Food Eng.
67
,
147
156
(
2005
).
5.
Sherman
,
P.
,
Industrial Rheology: With Particular Reference to Foods, Pharmaceuticals, and Cosmetics
(
Academic
,
London
,
1970
).
6.
D. Balzer, S. Varwig, and M. Weihrauch
,
“Viscoelasticity of personal care products,”
Colloids Surf. A: Physicochem. Eng. Asp.
99
, 233–246 (
1995
).
7.
Aho
,
J.
,
S.
Hvidt
, and
S.
Baldursdottir
, “Rheology in pharmaceutical sciences,” in Analytical Techniques in the Pharmaceutical Sciences, Advances in Delivery Science and Technology, edited by A. Müllertz, Y. Perrie, and T. Rades (Springer, New York, 2016), pp. 719–750.
8.
Budai
,
L.
,
M.
Budai
,
Z. E.
Fülöpné Pápay
,
Z.
Vilimi
, and
I.
Antal
, “
Rheological considerations of pharmaceutical formulations: Focus on viscoelasticity
,”
Gels
9
,
469
(
2023
).
9.
Barnes
,
H. A.
,
J. F.
Hutton
, and
K.
Walters
, An Introduction to Rheology, Rheology Series No. 3 (Elsevier, Amsterdam, 1989), p. 199.
10.
Bajaj
,
M.
,
J.
Ravi Prakash
, and
M.
Pasquali
, “
A computational study of the effect of viscoelasticity on slot coating flow of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
149
,
104
123
(
2008
).
11.
D’Avino
,
G.
,
F.
Greco
, and
P. L.
Maffettone
, “
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices
,”
Annu. Rev. Fluid Mech.
49
,
341
360
(
2017
).
12.
Oakey
,
J.
,
R. W.
Applegate
,
E.
Arellano
,
D. D.
Carlo
,
S. W.
Graves
, and
M.
Toner
, “
Particle focusing in staged inertial microfluidic devices for flow cytometry
,”
Anal. Chem.
82
,
3862
3867
(
2010
).
13.
Maremonti
,
M. I.
,
D.
Dannhauser
,
V.
Panzetta
,
P. A.
Netti
, and
F.
Causa
, “
Cell deformability heterogeneity recognition by unsupervised machine learning from in-flow motion parameters
,”
Lab Chip
22
,
4871
4881
(
2022
).
14.
Macosko
,
C. W.
, Rheology: Principles, Measurements, and Applications, Advances in Interfacial Engineering (Wiley-VCH, New York, 1994), p. 568.
15.
Lindner
,
A.
,
J.
Vermant
, and
D.
Bonn
, “
How to obtain the elongational viscosity of dilute polymer solutions?
,”
Physica A
319
,
125
133
(
2003
).
16.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “Experimental challenges of shear rheology: How to avoid bad data,” in Complex Fluids in Biological Systems, Biological and Medical Physics, Biomedical Engineering, edited by S. E. Spagnolie (Springer, New York, 2014), pp. 207–241.
17.
Del Giudice
,
F.
, “
A review of microfluidic devices for rheological characterisation
,”
Micromachines
13
,
167
(
2022
).
18.
Koser
,
A. E.
,
L.
Pan
,
N. C.
Keim
, and
P. E.
Arratia
, “
Measuring material relaxation and creep recovery in a microfluidic device
,”
Lab Chip
13
,
1850
1853
(
2013
).
19.
Zilz
,
J.
,
C.
Schäfer
,
C.
Wagner
,
R. J.
Poole
,
M. A.
Alves
, and
A.
Lindner
, “
Serpentine channels: Micro-rheometers for fluid relaxation times
,”
Lab Chip
14
,
351
358
(
2014
).
20.
Del Giudice
,
F.
,
G.
D’Avino
,
F.
Greco
,
I.
De Santo
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Rheometry-on-a-chip: Measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows
,”
Lab Chip
15
,
783
792
(
2015
).
21.
Del Giudice
,
F.
, “
Simultaneous measurement of rheological properties in a microfluidic rheometer
,”
Phys. Fluids
32
,
052001
(
2020
).
22.
Leshansky
,
A. M.
,
A.
Bransky
,
N.
Korin
, and
U.
Dinnar
, “
Tunable nonlinear viscoelastic ‘focusing’ in a microfluidic device
,”
Phys. Rev. Lett.
98
,
234501
(
2007
).
23.
Romeo
,
G.
,
G.
D’Avino
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Viscoelastic flow-focusing in microchannels: Scaling properties of the particle radial distributions
,”
Lab Chip
13
,
2802
2807
(
2013
).
24.
Roy
,
R.
,
J. S. M.
Quintero
,
R.
Lakkaraju
,
P. R.
Waghmare
, and
S.
Chakraborty
, “
Droplet-on-chip electro-spectroscopy detects the ultra-short relaxation time of a dilute polymer solution
,”
Soft Matter
19
,
5345
5352
(
2023
).
25.
Del Giudice
,
F.
,
G.
D’Avino
,
F.
Greco
,
P. L.
Maffettone
, and
A. Q.
Shen
, “
Fluid viscoelasticity drives self-assembly of particle trains in a straight microfluidic channel
,”
Phys. Rev. Appl.
10
,
064058
(
2018
).
26.
Liu
,
L.
,
H.
Xu
,
H.
Xiu
,
N.
Xiang
, and
Z.
Ni
, “
Microfluidic on-demand engineering of longitudinal dynamic self-assembly of particles
,”
Analyst
145
,
5128
5133
(
2020
).
27.
D’Avino
,
G.
,
M. A.
Hulsen
, and
P. L.
Maffettone
, “
Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel
,”
Comput. Fluids
86
,
45
55
(
2013
).
28.
D’Avino
,
G.
, and
P. L.
Maffettone
, “
Numerical simulations on the dynamics of trains of particles in a viscoelastic fluid flowing in a microchannel
,”
Meccanica
55
,
317
330
(
2020
).
29.
Khor
,
J. W.
,
N.
Jean
,
E. S.
Luxenberg
,
S.
Ermon
, and
S. K. Y.
Tang
, “
Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel
,”
Soft Matter
15
,
1361
1372
(
2019
).
30.
Solanki
,
S.
,
S.
Lee
,
A.
Jebakumar
,
J.
Lum
,
M.
Hamidi-Haines
,
C.
Denison
,
M.
Sundheim
,
K.
Schauer
,
P.
Stevenson
,
J.
Hintzman
, and
E.
Torniainen
, “
Machine learning for predicting microfluidic droplet generation properties
,”
Comput. Fluids
247
,
105651
(
2022
).
31.
Hadikhani
,
P.
,
N.
Borhani
,
S. M. H.
Hashemi
, and
D.
Psaltis
, “
Learning from droplet flows in microfluidic channels using deep neural networks
,”
Sci. Rep.
9
,
8114
(
2019
).
32.
Stoecklein
,
D.
,
K. G.
Lore
,
M.
Davies
,
S.
Sarkar
, and
B.
Ganapathysubramanian
, “
Deep learning for flow sculpting: Insights into efficient learning using scientific simulation data
,”
Sci. Rep.
7
,
46368
(
2017
).
33.
Garcia Eijo
,
P. M.
,
T.
Duriez
,
J. M.
Cabaleiro
, and
G.
Artana
, “
A machine learning-based framework to design capillary-driven networks
,”
Lab Chip
22
,
4860
4870
(
2022
).
34.
Galan
,
E. A.
,
H.
Zhao
,
X.
Wang
,
Q.
Dai
,
W. T.
Huck
, and
S.
Ma
, “
Intelligent microfluidics: The convergence of machine learning and microfluidics in materials science and biomedicine
,”
Matter
3
,
1893
1922
(
2020
).
35.
Heo
,
Y. J.
,
D.
Lee
,
J.
Kang
,
K.
Lee
, and
W. K.
Chung
, “
Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip
,”
Sci. Rep.
7
,
11651
(
2017
).
36.
Guo
,
B.
,
C.
Lei
,
H.
Kobayashi
,
T.
Ito
,
Y.
Yalikun
,
Y.
Jiang
,
Y.
Tanaka
,
Y.
Ozeki
, and
K.
Goda
, “
High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy
,”
Cytometry, Part A
91
,
494
502
(
2017
).
37.
Ghafari
,
M.
,
J.
Clark
,
H.-B.
Guo
,
R.
Yu
,
Y.
Sun
,
W.
Dang
, and
H.
Qin
, “
Complementary performances of convolutional and capsule neural networks on classifying microfluidic images of dividing yeast cells
,”
PLoS One
16
,
e0246988
(
2021
).
38.
Sesen
,
M.
, and
G.
Whyte
, “
Image-based single cell sorting automation in droplet microfluidics
,”
Sci. Rep.
10
,
8736
(
2020
).
39.
Bachratý
,
H.
,
K.
Bachratý
,
M.
Chovanec
,
I.
Janćigová
,
M.
Smiešková
, and
K.
Kovalčíková
, “
Applications of machine learning for simulations of red blood cells in microfluidic devices
,”
BMC Bioinf.
21
,
90
(
2020
).
40.
Damiati
,
S. A.
,
D.
Rossi
,
H. N.
Joensson
, and
S.
Damiati
, “
Artificial intelligence application for rapid fabrication of size-tunable plga microparticles in microfluidics
,”
Sci. Rep.
10
,
19517
(
2020
).
41.
Wang
,
J.
,
N.
Zhang
,
J.
Chen
,
G.
Su
,
H.
Yao
,
T.-Y.
Ho
, and
L.
Sun
, “
Predicting the fluid behavior of random microfluidic mixers using convolutional neural networks
,”
Lab Chip
21
,
296
309
(
2021
).
42.
McIntyre
,
D.
,
A.
Lashkaripour
,
P.
Fordyce
, and
D.
Densmore
, “
Machine learning for microfluidic design and control
,”
Lab Chip
22
,
2925
2937
(
2022
).
43.
Zheng
,
J.
,
T.
Cole
,
Y.
Zhang
,
J.
Kim
, and
S.-Y.
Tang
, “
Exploiting machine learning for bestowing intelligence to microfluidics
,”
Biosens. Bioelectron.
194
,
113666
(
2021
).
44.
Lin
,
T.
,
Z.
Wang
,
W.
Wang
, and
Y.
Sui
, “
A neural network-based algorithm for high-throughput characterisation of viscoelastic properties of flowing microcapsules
,”
Soft Matter
17
,
4027
4039
(
2021
).
45.
Jeyasountharan
,
A.
,
G.
D’Avino
, and
F.
Del Giudice
, “
Confinement effect on the viscoelastic particle ordering in microfluidic flows: Numerical simulations and experiments
,”
Phys. Fluids
34
,
042015
(
2022
).
46.
Chollet
,
F.
,
Deep Learning with Python
(
Manning
,
Shelter Island
,
2017
), p. 384.
47.
Hochreiter
,
S.
, and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
48.
Marhon
,
S. A.
,
C. J. F.
Cameron
, and
S. C.
Kremer
, “Recurrent neural networks,” in Handbook on Neural Information Processing, Intelligent Systems Reference Library, edited by M. Bianchini, M. Maggini, and L. C. Jain (Springer, Berlin, 2013), pp. 29–65.
49.
Hochreiter
,
S.
, “
The vanishing gradient problem during learning recurrent neural nets and problem solutions
,”
Int. J. Uncertain. Fuzziness Knowledge Based Syst.
06
,
107
116
(
1998
).
50.
Zhang
,
A.
,
Z. C.
Lipton
,
M.
Li
, and
A. J.
Smola
, Dive Into Deep Learning (Cambridge University Press,
2023
).
51.
Goodfellow
,
I.
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT
,
Cambridge
,
2016
).
52.
Breiman
,
L.
, “
Random forests
,”
Mach. Learn.
45
,
5
32
(
2001
).
You do not currently have access to this content.