For blending immiscible polymers, such as in the toughening modification of polylactide (PLA) via blending with rubbery materials, interfacial compatibilization is of great significance while the mechanism, especially the role of interfacial rheology, remains elusive. In this study, styrene-butadiene block copolymer elastomer (SBC) was employed to toughen PLA and a dumbbell-shaped Janus nanoparticle (JNP) consisting of polymethyl methacrylate and polystyrene spheres with equal size (∼80 nm) was used as the compatibilizer. Located at the interface, JNPs exhibited a great compatibilization efficiency in PLA/SBC blends, as demonstrated by the good morphology stabilization against droplet coalescence under static annealing and low shear flow conditions, as well as by the resistance against droplet breakup under high shear flow conditions. Moreover, as revealed from the linear viscoelasticity of JNP compatibilized blends, when JNP loading is more than 2 phr, aside from shape relaxation, an interfacial relaxation dominated by Marangoni stress was observed, indicating the possibility of particle redistribution on droplet surfaces. However, when loading is more than 4 phr, relaxations in the terminal zone no longer exist, implying the possible formation of a particle network on the droplet surface. This is consistent with the mechanical properties. The blend shows the greatest toughness at JNP loading around 3 phr, while the toughness is very poor when JNP loading is either too low or too high. This suggests interfacial relaxation to be crucial to guarantee a good toughening effect of SBC in PLA.

1.
Zhang
,
M.
,
C.
Jiang
,
Q.
Wu
,
G.
Zhang
,
F.
Liang
, and
Z.
Yang
, “
Poly(lactic acid)/poly(butylene succinate) (PLA/PBS) layered composite Gas barrier membranes by anisotropic janus nanosheets compatibilizers
,”
ACS Macro Lett.
11
(
5
),
657
662
(
2022
).
2.
Nofar
,
M.
,
R.
Salehiyan
, and
S.
Sinha Ray
, “
Rheology of poly (lactic acid)-based systems
,”
Polym. Rev.
59
(
3
),
465
509
(
2019
).
3.
Rasal
,
R. M.
,
A. V.
Janorkar
, and
D. E.
Hirt
, “
Poly(lactic acid) modifications
,”
Prog. Polym. Sci.
35
(
3
),
338
356
(
2010
).
4.
Yang
,
D.-D.
,
C.
Wu
,
G.
Wu
,
S.-C.
Chen
, and
Y.-Z.
Wang
, “
Toughening of polylactide with high tensile strength via constructing an integrative physical crosslinking network based on ionic interactions
,”
Macromolecules
54
(
1
),
291
301
(
2021
).
5.
Chen
,
X.
,
C.
Li
,
Y.
Ding
,
Y.
Li
,
J.
Li
,
L.
Sun
,
J.
Wei
,
X.
Wei
,
H.
Wang
,
K.
Zhang
,
L.
Pan
, and
Y.
Li
, “
Fully Bio-based and supertough PLA blends via a novel interlocking strategy combining strong dipolar interactions and stereocomplexation
,”
Macromolecules
55
(
13
),
5864
5878
(
2022
).
6.
Wang
,
Y.
,
Z.
Wei
,
X.
Leng
,
K.
Shen
, and
Y.
Li
, “
Highly toughened polylactide with epoxidized polybutadiene by in-situ reactive compatibilization
,”
Polymer
92
,
74
83
(
2016
).
7.
Alkhodairi
,
H.
, and
S. K.
Kumar
, “
Fracture toughness of polymer interfaces compatibilized with nanoparticle brushes
,”
Macromolecules
55
(
12
),
4937
4946
(
2022
).
8.
Bahrami
,
R.
,
T. I.
Löbling
,
A. H.
Gröschel
,
H.
Schmalz
,
A. H. E.
Müller
, and
V.
Altstädt
, “
The impact of janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions
,”
ACS Nano
8
(
10
),
10048
10056
(
2014
).
9.
Cardinaels
,
R.
, “
compatibilization of polymer blends by janus particles
,” in
Compatibilization of Polymer Blends
, edited by
A. R.
A
,
Thomas
S.
(
Elsevier
, Amsterdam,
2020
), Chap. 8, pp.
249
275
.
10.
He
,
H.
, and
F.
Liang
, “
Engineering polymer blends with controllable interfacial location of Janus particles as compatibilizers
,”
Chem. Mater.
34
(
8
),
3806
3818
(
2022
).
11.
Qu
,
Y.
,
Y.
Chen
,
X.
Ling
,
J.
Wu
,
J.
Hong
,
H.
Wang
, and
Y.
Li
, “
Reactive micro-crosslinked elastomer for supertoughened polylactide
,”
Macromolecules
55
(
17
),
7711
7723
(
2022
).
12.
Shang
,
M.
,
Y.
Wu
,
B.
Shentu
, and
Z.
Weng
, “
Toughening of PBT by POE/POE-g-GMA elastomer through regulating interfacial adhesion and toughening mechanism
,”
Ind. Eng. Chem. Res.
58
(
28
),
12650
12663
(
2019
).
13.
Ding
,
Y.
,
W.
Feng
,
D.
Huang
,
B.
Lu
,
P.
Wang
,
G.
Wang
, and
J.
Ji
, “
Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers
,”
Eur. Polym. J.
118
,
45
52
(
2019
).
14.
Friedrich
,
C.
, and
Y. Y.
Antonov
, “
Interfacial relaxation in polymer blends and gibbs elasticity
,”
Macromolecules
40
(
4
),
1283
1289
(
2007
).
15.
Lyu
,
S.
,
T. D.
Jones
,
F. S.
Bates
, and
C. W.
Macosko
, “
Role of block copolymers on suppression of droplet coalescence
,”
Macromolecules
35
(
20
),
7845
7855
(
2002
).
16.
Genoyer
,
J.
,
J.
Soulestin
, and
N. R.
Demarquette
, “
Influence of the molar masses on compatibilization mechanism induced by two block copolymers in PMMA/PS blends
,”
J. Rheol.
62
(
3
),
681
693
(
2018
).
17.
Moan
,
M.
,
J.
Huitric
,
P.
Médéric
, and
J.
Jarrin
, “
Rheological properties and reactive compatibilization of immiscible polymer blends
,”
J. Rheol.
44
(
6
),
1227
1245
(
2000
).
18.
Genoyer
,
J.
,
M.
Yee
,
J.
Soulestin
, and
N.
Demarquette
, “
Compatibilization mechanism induced by organoclay in PMMA/PS blends
,”
J. Rheol.
61
(
4
),
613
626
(
2017
).
19.
Van Puyvelde
,
P.
,
S.
Velankar
, and
P.
Moldenaers
, “
Rheology and morphology of compatibilized polymer blends
,”
Curr. Opin. Colloid Interface Sci.
6
(
5
),
457
463
(
2001
).
20.
Van Hemelrijck
,
E.
,
P.
Van Puyvelde
,
C. W.
Macosko
, and
P.
Moldenaers
, “
The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends
,”
J. Rheol.
49
(
3
),
783
798
(
2005
).
21.
Qiao
,
H.
,
B.
Zheng
,
G.
Zhong
,
Z.
Li
,
R.
Cardinaels
,
P.
Moldenaers
,
K.
Lamnawar
,
A.
Maazouz
,
C.
Liu
, and
H.
Zhang
, “
Understanding the rheology of polymer–polymer interfaces covered with janus nanoparticles: Polymer blends versus particle sandwiched multilayers
,”
Macromolecules
56
(
2
),
647
663
(
2023
).
22.
Van Puyvelde
,
P.
,
A.
Vananroye
,
R.
Cardinaels
, and
P.
Moldenaers
, “
Review on morphology development of immiscible blends in confined shear flow
,”
Polymer
49
(
25
),
5363
5372
(
2008
).
23.
Andrzejewski
,
J.
,
J.
Cheng
,
A.
Anstey
,
A. K.
Mohanty
, and
M.
Misra
, “
Development of toughened blends of poly(lactic acid) and poly(butylene adipate-co-terephthalate) for 3D printing applications: Compatibilization methods and material performance evaluation
,”
ACS Sustainable Chemistry & Engineering
8
(
17
),
6576
6589
(
2020
).
24.
Maani
,
A.
,
B.
Blais
,
M.-C.
Heuzey
, and
P. J.
Carreau
, “
Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends
,”
J. Rheol.
56
(
3
),
625
647
(
2012
).
25.
Nofar
,
M.
,
R.
Salehiyan
,
U.
Ciftci
,
A.
Jalali
, and
A.
Durmuş
, “
Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay
,”
Composites Part B: Engineering
182
,
107661
(
2020
).
26.
Park
,
C. C.
,
F.
Baldessari
, and
L. G.
Leal
, “
Study of molecular weight effects on coalescence: Interface slip layer
,”
J. Rheol.
47
(
4
),
911
942
(
2003
).
27.
Chen
,
D.
,
R.
Cardinaels
, and
P.
Moldenaers
, “
Effect of confinement on droplet coalescence in shear flow
,”
Langmuir
25
(
22
),
12885
12893
(
2009
).
28.
Pawar
,
Y.
, and
K. J.
Stebe
, “
Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants
,”
Phys. Fluids
8
(
7
),
1738
1751
(
1996
).
29.
Velankar
,
S.
,
P.
Van Puyvelde
,
J.
Mewis
, and
P.
Moldenaers
, “
Steady-shear rheological properties of model compatibilized blends
,”
J. Rheol.
48
(
4
),
725
744
(
2004
).
30.
Feigl
,
K.
,
D.
Megias-Alguacil
,
P.
Fischer
, and
E. J.
Windhab
, “
Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants
,”
Chem. Eng. Sci.
62
(
12
),
3242
3258
(
2007
).
31.
Genoyer
,
J.
,
N. R.
Demarquette
, and
J.
Soulestin
, “
Effect of clay particles size and location on coalescence in PMMA/PS blends
,”
J. Rheol.
63
(
6
),
883
893
(
2019
).
32.
Nasrollah Gavgani
,
J.
,
F.
Goharpey
,
S.
Velankar
, and
R.
Foudazi
, “
Suppressing droplet coalescence and aggregation in immiscible homopolymer blends by interfacially cross-linked compatibilizers
,”
J. Rheol.
62
(
5
),
1217
1231
(
2018
).
33.
Nofar
,
M.
,
A.
Maani
,
H.
Sojoudi
,
M. C.
Heuzey
, and
P. J.
Carreau
, “
Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow
,”
J. Rheol.
59
(
2
),
317
333
(
2015
).
34.
Vinckier
,
I.
,
P.
Moldenaers
, and
J.
Mewis
, “
Relationship between rheology and morphology of model blends in steady shear flow
,”
J. Rheol.
40
(
4
),
613
631
(
1996
).
35.
Samie
,
S.
,
H.
Abdolahifar
, and
N.
Goudarzian
, “
Preparation and modification of polystyrene/clay nanocomposite using ethylene octene copolymer and SBS block copolymer
,”
AIP Conf. Proc.
1779
(
1
),
040010
(
2016
).
36.
Guo
,
Y.
,
X.
Zuo
,
Y.
Xue
,
Y.
Zhou
,
Z.
Yang
,
Y.-C.
Chuang
,
C.-C.
Chang
,
G.
Yuan
,
S. K.
Satija
,
D.
Gersappe
, and
M. H.
Rafailovich
, “
Enhancing impact resistance of polymer blends via self-assembled nanoscale interfacial structures
,”
Macromolecules
51
(
11
),
3897
3910
(
2018
).
37.
Qu
,
Y.
,
C.
Rong
,
X.
Ling
,
J.
Wu
,
Y.
Chen
,
H.
Wang
, and
Y.
Li
, “
Role of interfacial postreaction during thermal treatment: Toward a better understanding of the toughness of PLLA/reactive elastomer blends
,”
Macromolecules
55
(
4
),
1321
1331
(
2022
).
38.
Cai
,
H.
,
B.
Zheng
,
D.
Zhu
,
Y.
Wu
,
R.
Cardinaels
,
P.
Moldenaers
,
Z.
Shen
,
Y.
Sheng
,
H.
Zhu
,
K.
Yu
, and
H.
Zhang
, “
Regulation of dewetting and morphology evolution in spin-coated PS/PMMA blend films via graphene-based janus nanosheets
,”
Appl. Surf. Sci.
630
,
157393
(
2023
).
39.
You
,
W.
, and
W.
Yu
, “
Onset reduction and stabilization of cocontinuous morphology in immiscible polymer blends by snowmanlike janus nanoparticles
,”
Langmuir
34
(
37
),
11092
11100
(
2018
).
40.
Caro
,
A. S.
,
T.
Parpaite
,
B.
Otazaghine
,
A.
Taguet
, and
J. M.
Lopez-Cuesta
, “
Viscoelastic properties of polystyrene/polyamide-6 blend compatibilized with silica/polystyrene janus hybrid nanoparticles
,”
J. Rheol.
61
(
2
),
305
310
(
2017
).
41.
Graebling
,
D.
,
R.
Muller
, and
J. F.
Palierne
, “
Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids
,”
Macromolecules
26
(
2
),
320
329
(
1993
).
42.
López-Barrón
,
C. R.
, and
C. W.
Macosko
, “
Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening
,”
J. Rheol.
58
(
6
),
1935
1953
(
2014
).
43.
Bell
,
J. R.
,
K.
Chang
,
C. R.
López-Barrón
,
C. W.
Macosko
, and
D. C.
Morse
, “
Annealing of cocontinuous polymer blends: Effect of block copolymer molecular weight and architecture
,”
Macromolecules
43
(
11
),
5024
5032
(
2010
).
44.
Cassagnau
,
P.
, “
Melt rheology of organoclay and fumed silica nanocomposites
,”
Polymer
49
(
9
),
2183
2196
(
2008
).
45.
Nofar
,
M.
,
M. C.
Heuzey
,
P. J.
Carreau
,
M. R.
Kamal
, and
J.
Randall
, “
Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight
,”
J. Rheol.
60
(
4
),
637
648
(
2016
).
46.
Labaume
,
I.
,
P.
Médéric
,
J.
Huitric
, and
T.
Aubry
, “
Comparative study of interphase viscoelastic properties in polyethylene/polyamide blends compatibilized with clay nanoparticles or with a graft copolymer
,”
J. Rheol.
57
(
2
),
377
392
(
2013
).
47.
Kapnistos
,
M.
,
A.
Hinrichs
,
D.
Vlassopoulos
,
S. H.
Anastasiadis
,
A.
Stammer
, and
B. A.
Wolf
, “
Rheology of a lower critical solution temperature binary polymer blend in the homogeneous, phase-separated, and transitional regimes
,”
Macromolecules
29
(
22
),
7155
7163
(
1996
).
48.
Huang
,
L.-H.
, and
C.-C.
Hua
, “
Predictive mesoscale simulation of flow-induced blend morphology, interfacial relaxation, and linear viscoelasticity of polymer–elastomer blends
,”
Macromolecules
55
(
17
),
7353
7367
(
2022
).
49.
Sailer
,
C.
, and
U. A.
Handge
, “
Reactive blending of polyamide 6 and styrene−acrylonitrile copolymer: Influence of blend composition and compatibilizer concentration on morphology and rheology
,”
Macromolecules
41
(
12
),
4258
4267
(
2008
).
50.
Wang
,
H.
,
X.
Yang
,
Z.
Fu
,
X.
Zhao
,
Y.
Li
, and
J.
Li
, “
Rheology of nanosilica-compatibilized immiscible polymer blends: Formation of a ‘heterogeneous network’ facilitated by interfacially anchored hybrid nanosilica
,”
Macromolecules
50
(
23
),
9494
9506
(
2017
).
51.
Salehiyan
,
R.
,
Y.
Yoo
,
W. J.
Choi
, and
K.
Hyun
, “
Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology
,”
Macromolecules
47
(
12
),
4066
4076
(
2014
).
52.
Ock
,
H. G.
,
K. H.
Ahn
,
S. J.
Lee
, and
K.
Hyun
, “
Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology
,”
Macromolecules
49
(
7
),
2832
2842
(
2016
).
53.
Jalali Dil
,
E.
,
N.
Virgilio
, and
B. D.
Favis
, “
The effect of the interfacial assembly of nano-silica in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties
,”
Eur. Polym. J.
85
,
635
646
(
2016
).
54.
Zhang
,
H.
,
K.
Lamnawar
, and
A.
Maazouz
, “
Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights
,”
Rheol. Acta
51
(
8
),
691
711
(
2012
).
55.
Riemann
,
R. E.
,
H. J.
Cantow
, and
C.
Friedrich
, “
Interpretation of a new interface-governed relaxation process in compatibilized polymer blends
,”
Macromolecules
30
(
18
),
5476
5484
(
1997
).
56.
Van Hemelrijck
,
E.
,
P.
Van Puyvelde
,
S.
Velankar
,
C. W.
Macosko
, and
P.
Moldenaers
, “
Interfacial elasticity and coalescence suppression in compatibilized polymer blends
,”
J. Rheol.
48
(
1
),
143
158
(
2004
).
57.
Du
,
B.
,
U. A.
Handge
,
S.
Majeed
, and
V.
Abetz
, “
Localization of functionalized MWCNT in SAN/PPE blends and their influence on rheological properties
,”
Polymer
53
(
24
),
5491
5501
(
2012
).
58.
Kong
,
M.
,
Y.
Huang
,
Y.
Lv
,
Q.
Yang
,
G.
Li
, and
R. G.
Larson
, “
Elongation thinning and morphology deformation of nanoparticle-filled polypropylene/polystyrene blends in elongational flow
,”
J. Rheol.
62
(
1
),
11
23
(
2018
).
59.
Zhu
,
X.
,
M.
Kong
,
Y.
Lv
,
Y.
Huang
, and
G.
Li
, “
Selective distribution of nanoparticles in immiscible blends: Effects on the morphology evolution and rheology in quiescent annealing, shear and extensional flow
,”
J. Rheol.
64
(
6
),
1357
1371
(
2020
).
60.
Honerkamp
,
J.
, and
J.
Weese
, “
A nonlinear regularization method for the calculation of relaxation spectra
,”
Rheol. Acta
32
(
1
),
65
73
(
1993
).
61.
Mei
,
Y.
,
G.
Li
,
P.
Moldenaers
, and
R.
Cardinaels
, “
Dynamics of particle-covered droplets in shear flow: Unusual breakup and deformation hysteresis
,”
Soft Matter
12
(
47
),
9407
9412
(
2016
).
62.
Vinckier
,
I.
,
P.
Moldenaers
,
A. M.
Terracciano
, and
N.
Grizzuti
, “
Droplet size evolution during coalescence in semiconcentrated model blends
,”
AIChE J.
44
(
4
),
951
958
(
1998
).
63.
Tucker
III,
C. L.
, and
P.
Moldenaers
, “
MICROSTRUCTURAL EVOLUTION IN POLYMER BLENDS
,”
Annual Review of Fluid Mechanics
34
(
1
),
177
210
(
2002
).
64.
Minale
,
M.
,
P.
Moldenaers
, and
J.
Mewis
, “
Effect of shear history on the morphology of immiscible polymer blends
,”
Macromolecules
30
(
18
),
5470
5475
(
1997
).
65.
Bousmina
,
M.
,
P.
Bataille
,
S.
Sapieha
, and
H. P.
Schreiber
, “
Comparing the effect of corona treatment and block copolymer addition on rheological properties of polystyrene/polyethylene blends
,”
J. Rheol.
39
(
3
),
499
517
(
1995
).
66.
Nofar
,
M.
,
M. C.
Heuzey
,
P. J.
Carreau
, and
M. R.
Kamal
, “
Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow
,”
Polymer
98
,
353
364
(
2016
).
67.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
(
5
),
1171
1200
(
2003
).
68.
Wang
,
H.
,
Z.
Fu
,
X.
Zhao
,
Y.
Li
, and
J.
Li
, “
Reactive nanoparticles compatibilized immiscible polymer blends: Synthesis of reactive SiO2 with long poly(methyl methacrylate) chains and the in situ formation of janus SiO2 nanoparticles anchored exclusively at the interface
,”
ACS Appl. Mater. Interfaces
9
(
16
),
14358
14370
(
2017
).
69.
Singla
,
R. K.
,
M. T.
Zafar
,
S. N.
Maiti
, and
A. K.
Ghosh
, “
Physical blends of PLA with high vinyl acetate containing EVA and their rheological, thermo-mechanical and morphological responses
,”
Polym. Test.
63
,
398
406
(
2017
).
70.
Samuel
,
C.
,
J.-M.
Raquez
, and
P.
Dubois
, “
PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties?
,”
Polymer
54
(
15
),
3931
3939
(
2013
).
71.
Wang
,
Y.
,
S. S.
Funari
, and
J. F.
Mano
, “
Influence of semicrystalline morphology on the glass transition of poly(L-lactic acid)
,”
Macromol. Chem. Phys.
207
(
14
),
1262
1271
(
2006
).
72.
Huang
,
Y.
,
M. T.
Müller
,
R.
Boldt
,
C.
Zschech
,
U.
Gohs
, and
S.
Wießner
, “
Improved rheology, crystallization, and mechanical performance of PLA/mPCL blends prepared by electron-induced reactive processing
,”
ACS Sustainable Chem. Eng.
9
(
9
),
3478
3489
(
2021
).
73.
Sakai
,
F.
,
K.
Nishikawa
,
Y.
Inoue
, and
K.
Yazawa
, “
Nucleation enhancement effect in poly(l-lactide) (PLLA)/poly(ɛ-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility
,”
Macromolecules
42
(
21
),
8335
8342
(
2009
).
74.
Bahrami
,
R.
,
T. I.
Löbling
,
H.
Schmalz
,
A. H. E.
Müller
, and
V.
Altstädt
, “
Synergistic effects of janus particles and triblock terpolymers on toughness of immiscible polymer blends
,”
Polymer
109
,
229
237
(
2017
).
75.
Chen
,
X.
,
R.
Zhang
,
Y.
Mao
,
L.
Zhong
,
P.
Lin
,
Q.
Deng
,
B.
Zheng
,
H.
Shen
,
Z.
Feng
, and
H.
Zhang
, “
Development of a toughened and antibacterial poly(lactide acid) (PLA) with preserved strength by elemental sulfur-based bio-renewable dynamically crosslinked elastomers
,”
Chem. Eng. J.
467
,
143419
(
2023
).
You do not currently have access to this content.