Clay minerals are abundant natural materials used widely in coatings, construction materials, ceramics, as well as being a component of drilling fluids. Here, we present the effect of steady and oscillatory preshear on organophilic modified clay gels in synthetic oil. Both platelet and needlelike particles are used as viscosifiers in drilling fluid formulations. For both particles, the plateau modulus exhibits a similar concentration dependence, G P c 3.9, whereas the yield strain is γ y c 1 for the platelets and γ y c 1.7 for the needles. Mixtures of the two follow an intermediate behavior: at low concentrations, their elasticity and yield strain follows that of needle particles while at higher concentrations they exhibit a weaker power-law dependence. Furthermore, upon varying the preshear history, the gel viscoelastic properties can be significantly tuned. At lower (higher) clay concentrations, preshear at specific oscillatory strain amplitudes or steady shear rates may induce a hardening (softening) of the dispersions and, at all concentrations, a lowering of the shear strain. Hence, in needle dispersions preshear resulted in changes in the volume fraction dependence of the elastic modulus from G P c 3.9 to G P c 2.5 and of the yield strain from γ y c 1.7 to γ y c 1. However, small angle x-ray scattering showed not much structural changes, within the q-range covered. Our findings indicate ways to design colloidal organoclay dispersions with a mechanical response that can be tuned at will.

1.
Arauz-Lara
,
J. L.
, “
Colloidal fluids
,” in
Fluids, Colloids and Soft Materials
(
Wiley
,
New York
,
2016
), pp.
187
201
.
2.
Gaponik
,
N.
,
A.-K.
Herrmann
, and
A.
Eychmüller
, “
Colloidal nanocrystal-based gels and aerogels: Material aspects and application perspectives
,”
J. Phys. Chem. Lett.
3
(
1
),
8
17
(
2012
).
3.
Petekidis
,
G.
, and
N. J.
Wagner
, “
Rheology of colloidal glasses and gels
,” in
Theory and Applications of Colloidal Suspension Rheology
, edited by
J.
Mewis
and
N. J.
Wagner
(
Cambridge University
,
Cambridge
,
2021
), pp.
173
226
.
4.
Mewis
,
J.
, and
N. J.
Wagner
, “
Applications
,” in
Theory and Applications of Colloidal Suspension Rheology
(
Cambridge University
,
Cambridge
,
2021
), pp.
352
406
.
5.
Ferreiro-Córdova
,
C.
,
E.
Del Gado
,
G.
Foffi
, and
M.
Bouzid
, “
Multi-component colloidal gels: Interplay between structure and mechanical properties
,”
Soft Matter
16
(
18
),
4414
4421
(
2020
).
6.
Smith
,
P. A.
,
G.
Petekidis
,
S. U.
Egelhaaf
, and
W. C. K.
Poon
, “
Yielding and crystallization of colloidal gels under oscillatory shear
,”
Phys. Rev. E
76
(
4
),
041402
(
2007
).
7.
Lu
,
P. J.
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
(
7194
),
499
503
(
2008
).
8.
Trappe
,
V.
, and
P.
Sandkühler
, “
Colloidal gels—Low-density disordered solid-like states
,”
Curr. Opin. Colloid Interface Sci.
8
(
6
),
494
500
(
2004
).
9.
Poon
,
W. C. K.
, and
M. D.
Haw
, “
Mesoscopic structure formation in colloidal aggregation and gelation
,”
Adv. Colloid Interface Sci.
73
,
71
126
(
1997
).
10.
Helgeson
,
M. E.
,
Y.
Gao
,
S. E.
Moran
,
J.
Lee
,
M.
Godfrin
,
A.
Tripathi
,
A.
Bose
, and
P. S.
Doyle
, “
Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels
,”
Soft Matter
10
(
17
),
3122
3133
(
2014
).
11.
Weitz
,
D. A.
,
J. S.
Huang
,
M. Y.
Lin
, and
J.
Sung
, “
Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids
,”
Phys. Rev. Lett.
54
(
13
),
1416
1419
(
1985
).
12.
Schaefer
,
D. W.
,
J. E.
Martin
,
P.
Wiltzius
, and
D. S.
Cannell
, “
Fractal geometry of colloidal aggregates
,”
Phys. Rev. Lett.
52
(
26
),
2371
2374
(
1984
).
13.
Weitz
,
D. A.
, and
M.
Oliveria
, “
Fractal structures formed by kinetic aggregation of aqueous gold colloids
,”
Phys. Rev. Lett.
52
(
16
),
1433
1436
(
1984
).
14.
Feder
,
J.
,
Fractals
(
Springer U.S.
,
Boston
,
MA
,
1988
).
15.
Liu
,
J.
,
W. Y.
Shih
,
M.
Sarikaya
, and
I. A.
Aksay
, “
Fractal colloidal aggregates with finite interparticle interactions: Energy dependence of the fractal dimension
,”
Phys. Rev. A
41
(
6
),
3206
3213
(
1990
).
16.
Zaccarelli
,
E.
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
(
32
),
323101
(
2007
).
17.
Bantawa
,
M.
,
B.
Keshavarz
,
M.
Geri
,
M.
Bouzid
,
T.
Divoux
,
G. H.
McKinley
, and
E.
Del Gado
, “
The hidden hierarchical nature of soft particulate gels
,”
Nat. Phys.
19
(
8
),
1178
1184
(
2023
).
18.
Keshavarz
,
B.
,
D. G.
Rodrigues
,
J.-B.
Champenois
,
M. G.
Frith
,
J.
Ilavsky
,
M.
Geri
,
T.
Divoux
,
G. H.
McKinley
, and
A.
Poulesquen
, “
Time–connectivity superposition and the Gel/glass duality of weak colloidal gels
,”
Proc. Natl. Acad. Sci. U.S.A.
118
(
15
),
e2022339118
(
2021
).
19.
Coussot
,
P.
,
H.
Tabuteau
,
X.
Chateau
,
L.
Tocquer
, and
G.
Ovarlez
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
(
6
),
975
994
(
2006
).
20.
Joshi
,
Y. M.
, “
Perspective: Analysis of thixotropic timescale
,”
J. Rheol.
68
(
4
),
641
653
(
2024
).
21.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Viscoelasticity and rheological hysteresis
,”
J. Rheol.
67
(
1
),
139
155
(
2023
).
22.
Müller
,
F. J.
,
L.
Isa
, and
J.
Vermant
, “
Toughening colloidal gels using rough building blocks
,”
Nat. Commun.
14
(
1
),
5309
(
2023
).
23.
Shih
,
W.-H.
,
W. Y.
Shih
,
S.-I.
Kim
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
(
8
),
4772
4779
(
1990
).
24.
Dinsmore
,
A. D.
,
V.
Prasad
,
I. Y.
Wong
, and
D. A.
Weitz
, “
Microscopic structure and elasticity of weakly aggregated colloidal gels
,”
Phys. Rev. Lett.
96
(
18
),
185502
(
2006
).
25.
Krall
,
A. H.
, and
D. A.
Weitz
, “
Internal dynamics and elasticity of fractal colloidal gels
,”
Phys. Rev. Lett.
80
(
4
),
778
781
(
1998
).
26.
Mohraz
,
A.
, and
M. J.
Solomon
, “
Gelation and internal dynamics of colloidal rod aggregates
,”
J. Colloid Interface Sci.
300
(
1
),
155
162
(
2006
).
27.
Herzhaft
,
B.
,
L.
Rousseau
,
L.
Neau
,
M.
Moan
, and
F.
Bossard
, “
Influence of temperature and clays/emulsion microstructure on oil-based mud low shear rate rheology
,”
SPE J.
8
,
211
217
(
2003
).
28.
Palaoro
,
G.
,
D. E. V.
Andrade
,
J. F.
Galdino
,
A. T.
Franco
,
E.
Alves
, and
A.
Waldmann
, “
Influence of pressure on the gel strength and on the solid-like behavior for an inverted emulsion drilling fluid
,”
J. Petrol. Sci. Eng.
219
,
111114
(
2022
).
29.
Hermoso
,
J.
,
F.
Martínez Boza
, and
C.
Gallegos
, “
Influence of aqueous phase volume fraction, organoclay concentration and pressure on invert-emulsion oil muds rheology
,”
J. Ind. Eng. Chem.
22
,
341
349
(
2014
).
30.
Ali
,
M.
,
H. H.
Jarni
,
A.
Aftab
,
A. R.
Ismail
,
N. M. C.
Saady
,
M. F.
Sahito
,
A.
Keshavarz
,
S.
Iglauer
, and
M.
Sarmadivaleh
, “
Nanomaterial-based drilling fluids for exploitation of unconventional reservoirs: A review
,”
Energies
13
(
13
),
3417
(
2020
).
31.
Williamson
,
D.
,
Oilfield Review Spring 25
(
Schlumberger
, Houston, TX,
2013
).
32.
Clarke
,
A.
, “
Gel breakdown in a formulated product via accumulated strain
,”
Soft Matter
17
(
34
),
7893
7902
(
2021
).
33.
Clarke
,
A.
,
L.
Bailey
, and
E.
Jamie
, “Arrested phase separation and gel collapse in oil-continuous drilling fluids: A route to barite sag,” AADE 20-FTCE-078 (2020).
34.
Clarke
,
A.
,
E.
Jamie
,
N. A.
Burger
,
B.
Loppinet
, and
G.
Petekidis
, “
A microstructural investigation of an industrial attractive Gel at pressure and temperature
,”
Soft Matter
18
(
20
),
3941
3954
(
2022
).
35.
Li
,
B.
,
W.
You
,
L.
Peng
,
X.
Huang
, and
W.
Yu
, “
Revealing the shear effect on the interfacial layer in polymer nanocomposites through nanofiber reorientation
,”
Macromolecules
56
,
3050
3063
(
2023
).
36.
Bergaya
,
F.
, and
G.
Lagaly
, “
Chapter 1 - general introduction: Clays, clay minerals, and clay science
,” in
Developments in Clay Science
(
Elsevier
,
New York
,
2013
), Vol. 5, pp.
1
19
.
37.
Stockmeyer
,
M. R.
, “
Adsorption of organic compounds on organophilic bentonites
,”
Appl. Clay Sci.
6
(
1
),
39
57
(
1991
).
38.
Theng
,
B. K. G.
,
G. J.
Churchman
,
W. P.
Gates
, and
G.
Yuan
, “
Organically modified clays for pollutant uptake and environmental protection
,” in
Soil Mineral Microbe-Organic Interactions: Theories and Applications
, edited by
Q.
Huang
,
P. M.
Huang
, and
A.
Violante
(
Springer
,
Berlin
,
2008
), pp.
145
174
.
39.
Bouthier
,
L.-V.
, and
T.
Gibaud
, “
Three length-scales colloidal gels: The clusters of clusters versus the interpenetrating clusters approach
,”
J. Rheol.
67
(
3
),
621
633
(
2023
).
40.
Dagès
,
N.
,
L. V.
Bouthier
,
L.
Matthews
,
S.
Manneville
,
T.
Divoux
,
A.
Poulesquen
, and
T.
Gibaud
, “
Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation
,”
Soft Matter
18
(
35
),
6645
6659
(
2022
).
41.
Gisler
,
T.
,
R. C.
Ball
, and
D. A.
Weitz
, “
Strain hardening of fractal colloidal gels
,”
Phys. Rev. Lett.
82
(
5
),
1064
1067
(
1999
).
42.
Fiocco
,
D.
,
G.
Foffi
, and
S.
Sastry
, “
Encoding of memory in sheared amorphous solids
,”
Phys. Rev. Lett.
112
(
2
),
025702
(
2014
).
43.
de Oliveira Reis
,
G.
,
T.
Gibaud
,
B.
Saint-Michel
,
S.
Manneville
,
M.
Leocmach
,
L.
Vaysse
,
F.
Bonfils
,
C.
Sanchez
, and
P.
Menut
, “
Irreversible hardening of a colloidal Gel under shear: The smart response of natural rubber latex gels
,”
J. Colloid Interface Sci.
539
,
287
296
(
2019
).
44.
Larsen
,
T.
,
A. L.
Søbye
,
J. R.
Royer
,
W. C. K.
Poon
,
T.
Larsen
,
S. J.
Andreasen
,
A. D.
Drozdov
, and
J. D. C.
Christiansen
, “
Rheology of polydisperse nonspherical graphite particles suspended in mineral oil
,”
J. Rheol.
67
(
1
),
81
89
(
2023
).
45.
Bonacci
,
F.
,
X.
Chateau
,
E. M.
Furst
,
J.
Fusier
,
J.
Goyon
, and
A.
Lemaître
, “
Contact and macroscopic ageing in colloidal suspensions
,”
Nat. Mater.
19
(
7
),
775
780
(
2020
).
46.
Zaccone
,
A.
,
D.
Gentili
,
H.
Wu
,
M.
Morbidelli
, and
E.
Del Gado
, “
Shear-driven solidification of dilute colloidal suspensions
,”
Phys. Rev. Lett.
106
(
13
),
138301
(
2011
).
47.
Colombo
,
J.
, and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
(
5
),
1089
1116
(
2014
).
48.
Laurati
,
M.
,
S. U.
Egelhaaf
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal gels with intermediate volume fraction
,”
J. Rheol.
55
(
3
),
673
706
(
2011
).
49.
Koumakis
,
N.
,
E.
Moghimi
,
R.
Besseling
,
W. C. K.
Poon
,
J. F.
Brady
, and
G.
Petekidis
, “
Tuning colloidal gels by shear
,”
Soft Matter
11
(
23
),
4640
4648
(
2015
).
50.
Moghimi
,
E.
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Colloidal gels tuned by oscillatory shear
,”
Soft Matter
13
(
12
),
2371
2383
(
2017
).
51.
Das
,
M.
, and
G.
Petekidis
, “
Shear induced tuning and memory effects in colloidal gels of rods and spheres
,”
J. Chem. Phys.
157
(
23
),
234902
(
2022
).
52.
Solomon
,
M. J.
, and
P. T.
Spicer
, “
Microstructural regimes of colloidal rod suspensions, gels, and glasses
,”
Soft Matter
6
(
7
),
1391
1400
(
2010
).
53.
He
,
H.
,
L.
Ma
,
J.
Zhu
,
R. L.
Frost
,
B. K. G.
Theng
, and
F.
Bergaya
, “
Synthesis of organoclays: A critical review and some unresolved issues
,”
Appl. Clay Sci.
100
,
22
28
(
2014
).
54.
Narayanan
,
T.
,
W.
Chèvremont
, and
T.
Zinn
, “
Small-angle X-ray scattering in the era of fourth-generation light sources
,”
J. Appl. Crystallogr.
56
(
4
),
939
946
(
2023
).
55.
Bergane
,
C.
, and
L.
Hammadi
, “
Impact of organophilic clay on rheological properties of gasoil-based drilling muds
,”
J. Petrol. Explor. Prod. Technol.
10
(
8
),
3533
3540
(
2020
).
56.
Al-Malki
,
N.
,
P.
Pourafshary
,
H.
Al-Hadrami
, and
J.
Abdo
, “
Controlling bentonite-based drilling mud properties using sepiolite nanoparticles
,”
Petrol. Explor. Dev.
43
,
717
723
(
2016
).
57.
King
,
H. E.
,
S. T.
Milner
,
M. Y.
Lin
,
J. P.
Singh
, and
T. G.
Mason
, “
Structure and rheology of organoclay suspensions
,”
Phys. Rev. E
75
(
2
),
021403
(
2007
).
58.
Akkal
,
R.
,
N.
Cohaut
,
M.
Khodja
,
T.
Ahmed-Zaid
, and
F.
Bergaya
, “
Rheo-SAXS investigation of organoclay water in oil emulsions
,”
Colloids Surf., A
436
,
751
762
(
2013
).
59.
Leong
,
Y. K.
, and
P. L.
Clode
, “
Time-dependent clay gels: Stepdown shear rate behavior, microstructure, ageing, and phase state ambiguity
,”
Phys. Fluids
35
(
12
),
123329
(
2023
).
60.
Wu
,
H.
, and
M.
Morbidelli
, “
A model relating structure of colloidal gels to their elastic properties
,”
Langmuir
17
(
4
),
1030
1036
(
2001
).
61.
Buscall
,
R.
,
P. D. A.
Mills
,
J. W.
Goodwin
, and
D. W.
Lawson
, “
Scaling behaviour of the rheology of aggregate networks formed from colloidal particles
,”
J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases
84
(
12
),
4249
4260
(
1988
).
62.
Merad
,
B.
,
K.
Bekkour
, and
M.
Gareche
, “
Rheological and structural characterization of organo-hectorite dispersions: Influence of the organoclay loading
,”
Appl. Clay Sci.
184
,
105321
(
2020
).
63.
Zhuang
,
G.
,
J.
Gao
,
S.
Peng
, and
Z.
Zhang
, “
Synergistically using layered and fibrous organoclays to enhance the rheological properties of oil-based drilling fluids
,”
Appl. Clay Sci.
172
,
40
48
(
2019
).
64.
Liu
,
P.
,
M.
Du
,
P.
Clode
,
J.
Liu
, and
Y.-K.
Leong
, “
Rod–plate interactions in sepiolite–LAPONITE® gels: Microstructure, surface chemistry and rheology
,”
Soft Matter
17
(
9
),
2614
2623
(
2021
).
65.
Liu
,
P.
,
M.
Du
,
P.
Clode
,
P.
Yuan
,
J.
Liu
, and
Y.-K.
Leong
, “
Yield stress and microstructure of composite halloysite-LAPONITE® gels: Effects of mixing ratio, surface chemistry, and ageing time
,”
Colloids Surf., A
640
,
128472
(
2022
).
66.
Leong
,
Y.-K.
,
P.
Liu
,
J.
Liu
,
P.
Clode
, and
W.
Huang
, “
Microstructure and time-dependent behavior of composite NaMnt-kaolin gels: Rigid - flexible platelet interactions and configurations
,”
Colloids Surf., A
656
,
130476
(
2023
).
67.
Zhuang
,
G.
,
Z.
Zhang
,
S.
Peng
,
J.
Gao
, and
M.
Jaber
, “
Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite
,”
Appl. Clay Sci.
161
,
505
512
(
2018
).
68.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
69.
Jamali
,
S.
,
R.
Armstrong
, and
G.
McKinley
, “
Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear
,”
Phys. Rev. Lett.
123
,
248003
(
2019
).
70.
Caggioni
,
M.
,
V.
Trappe
, and
P. T.
Spicer
, “
Variations of the herschel–bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials
,”
J. Rheol.
64
(
2
),
413
422
(
2020
).
71.
Munier
,
P.
,
S. E.
Hadi
,
M.
Segad
, and
L.
Bergström
, “
Rheo-SAXS study of shear-induced orientation and relaxation of cellulose nanocrystal and montmorillonite nanoplatelet dispersions
,”
Soft Matter
18
(
2
),
390
396
(
2022
).
72.
Sudreau
,
I.
,
M.
Servel
,
E.
Freyssingeas
,
F.
Liénard
,
S.
Karpati
,
S.
Parola
,
X.
Jaurand
,
P.-Y.
Dugas
,
L.
Matthews
,
T.
Gibaud
,
T.
Divoux
, and
S.
Manneville
, “
Shear-induced stiffening in boehmite gels: A rheo-X-ray-scattering study
,”
Phys. Rev. Mater.
7
(
11
),
115603
(
2023
).
73.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
(
1
),
018304
(
2013
).
74.
Rathinaraj
,
J. D. J.
,
K. R.
Lennon
,
M.
Gonzalez
,
A.
Santra
,
J. W.
Swan
, and
G. H.
McKinley
, “
Elastoviscoplasticity, hyperaging, and time–age-time–temperature superposition in aqueous dispersions of bentonite clay
,”
Soft Matter
19
(
38
),
7293
7312
(
2023
).
75.
Bhattacharyya
,
T.
,
A. R.
Jacob
,
G.
Petekidis
, and
Y. M.
Joshi
, “
On the nature of flow curve and categorization of thixotropic yield stress materials
,”
J. Rheol.
67
(
2
),
461
477
(
2023
).
76.
Joshi
,
Y. M.
, and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
(
6
),
521
549
(
2018
).
77.
Nabizadeh
,
M.
, and
S.
Jamali
, “
Life and death of colloidal bonds control the rate-dependent rheology of gels
,”
Nat. Commun.
12
(
1
),
4274
(
2021
).
78.
Whitaker
,
K. A.
,
Z.
Varga
,
L. C.
Hsiao
,
M. J.
Solomon
,
J. W.
Swan
, and
E. M.
Furst
, “
Colloidal gel elasticity arises from the packing of locally glassy clusters
,”
Nat. Commun.
10
(
1
),
2237
(
2019
).
79.
Ness
,
C.
, and
A.
Zaccone
, “
Effect of hydrodynamic interactions on the lifetime of colloidal bonds
,”
Ind. Eng. Chem. Res
.
56
(
13
),
3726
3732
(
2017
).
80.
Jiang
,
Y.
, and
R.
Seto
, “
Colloidal gelation with non-sticky particles
,”
Nat. Commun.
14
(
1
),
2773
(
2023
).
81.
Raghavan
,
S. R.
, and
S. A.
Khan
, “
Shear-induced microstructural changes in flocculated suspensions of fumed silica
,”
J. Rheol.
39
(
6
),
1311
1325
(
1995
).
82.
Vermant
,
J.
, and
M.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys.: Condens. Matter
17
,
R187
R216
(
2005
).
83.
Mohraz
,
A.
, and
M.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
,
657
681
(
2005
).
84.
Dickinson
,
E.
, “
Structure and rheology of colloidal particle gels: Insight from computer simulation
,”
Adv. Colloid Interface Sci.
199–200
,
114
127
(
2013
).
You do not currently have access to this content.