Predicting the response of complex fluids to different flow conditions has been the focal point of rheology and is generally done via constitutive relations. There are, nonetheless, scenarios in which not much is known from the material mathematically, while data collection from samples is elusive, resource-intensive, or both. In such cases, meta-modeling of observables using a parametric surrogate model called multi-fidelity neural networks (MFNNs) may obviate the constitutive equation development step by leveraging only a handful of high-fidelity (Hi-Fi) data collected from experiments (or high-resolution simulations) and an abundance of low-fidelity (Lo-Fi) data generated synthetically to compensate for Hi-Fi data scarcity. To this end, MFNNs are employed to meta-model the material responses of a thermo-viscoelastic (TVE) fluid, consumer product Johnson’s® Baby Shampoo, under four flow protocols: steady shear, step growth, oscillatory, and small/large amplitude oscillatory shear (S/LAOS). In addition, the time–temperature superposition (TTS) of the material response and MFNN predictions are explored. By applying simple linear regression (without induction of any constitutive equation) on log-spaced Hi-Fi data, a series of Lo-Fi data were generated and found sufficient to obtain accurate material response recovery in terms of either interpolation or extrapolation for all flow protocols except for S/LAOS. This insufficiency is resolved by informing the MFNN platform with a linear constitutive model (Maxwell viscoelastic) resulting in simultaneous interpolation and extrapolation capabilities in S/LAOS material response recovery. The roles of data volume, flow type, and deformation range are discussed in detail, providing a practical pathway to multifidelity meta-modeling of different complex fluids.

1.
Abu-Jdayil
,
B.
,
H. A.
Mohameed
,
M.
Sa’Id
, and
T.
Snobar
, “
Rheological characterization of hair shampoo in the presence of dead sea salt
,”
Int. J. Cosmet. Sci.
26
,
19
29
(
2004
).
2.
Amin
,
S.
,
G. V.
Barnett
,
J. A.
Pathak
,
C. J.
Roberts
, and
P. S.
Sarangapani
, “
Protein aggregation, particle formation, characterization and rheology
,”
Curr. Opin. Colloid Interf. Sci.
19
,
438
449
(
2014
).
3.
Ardakani
,
H. A.
,
E.
Mitsoulis
, and
S. G.
Hatzikiriakos
, “
Thixotropic flow of toothpaste through extrusion dies
,”
J. Non-Newtonian Fluid Mech.
166
,
1262
1271
(
2011
).
4.
Ciccone
,
G.
,
S.
Skopalik
,
C.
Smart
,
S.
Gezgin
,
D.
Ridland
,
M. C.
Paul
,
M.
del Pilar Noriega Escobar
, and
M.
Tassieri
, “
A rheological characterization of synthetic detergent formulations
,”
Phys. Fluids
34
,
097109
(
2022
).
5.
Coussot
,
P.
,
F.
Bertrand
, and
B.
Herzhaft
, “
Rheological behavior of drilling muds, characterization using mri visualization
,”
Oil Gas Sci. Technol.
59
,
23
29
(
2004
).
6.
Gonçalves
,
E. V.
, and
S. C. D. S.
Lannes
, “
Chocolate rheology
,”
Ciência e Tecnologia de Alimentos
30
,
845
851
(
2010
).
7.
Koocheki
,
A.
,
A.
Ghandi
,
S. M. A.
Razavi
,
S. A.
Mortazavi
, and
T.
Vasiljevic
, “
The rheological properties of ketchup as a function of different hydrocolloids and temperature
,”
Int. J. Food Sci. Technol.
44
,
596
602
(
2009
).
8.
Marapureddy
,
S. G.
, and
P.
Thareja
,
Structure and Rheology of Hydrogels: Applications in Drug Delivery
(
Springer, Singapore
,
2020
), pp.
75
99
.
9.
Planche
,
J. P.
,
P. M.
Claudy
,
J. M.
Létoffé
, and
D.
Martin
, “
Using thermal analysis methods to better understand asphalt rheology
,”
Thermochimica Acta
324
,
223
227
(
1998
).
10.
Rifaai
,
Y.
,
A.
Yahia
,
A.
Mostafa
,
S.
Aggoun
, and
E.-H.
Kadri
, “
Rheology of fly ash-based geopolymer: Effect of naoh concentration
,”
Construct. Build. Mater.
223
,
583
594
(
2019
).
11.
Zahari
,
I.
,
K.
Östbring
,
J. K.
Purhagen
, and
M.
Rayner
, “
Plant-based meat analogues from alternative protein: A systematic literature review
,”
Foods
11
,
2870
(
2022
).
12.
Zhang
,
Y.
,
W.
Ng
,
J.
Hu
,
S. S.
Mussa
,
Y.
Ge
, and
H.
Xu
, “
Formulation and in vitro stability evaluation of ethosomal carbomer hydrogel for transdermal vaccine delivery
,”
Colloids Surf. B Biointerfaces
163
,
184
191
(
2018
).
13.
Macosko
,
C. W.
,
Rheology Principles, Measurements, and Applications
(
Wiley-VCH
,
Norwood, MA
,
1994
).
14.
Armstrong
,
M. J.
,
A. N.
Beris
, and
N. J.
Wagner
, “
An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models
,”
AIChE J.
63
,
1937
1958
(
2017
).
15.
Raissi
,
M.
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
16.
Karniadakis
,
G. E.
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
,
422
440
(
2021
).
17.
Raissi
,
M.
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
,
1026
1030
(
2020
).
18.
Raissi
,
M.
, “
Deep hidden physics models: Deep learning of nonlinear partial differential equations
,”
J. Machine Learn. Res.
19
,
932
955
(
2018
).
19.
Karnakov
,
P.
,
S.
Litvinov
, and
P.
Koumoutsakos
, “Optimizing a discrete loss (ODIL) to solve forward and inverse problems for partial differential equations using machine learning tools,” arXiv:2205.04611 (
2022
).
20.
Li
,
Z.
,
K.
Meidani
, and
A. B.
Farimani
, “
Transformer for partial differential equations’ operator learning
,” arXiv:2205.13671 (
2022
).
21.
Zhang
,
L.
, and
P. N.
Suganthan
, “
A survey of randomized algorithms for training neural networks
,”
Inf. Sci.
364-365
,
146
155
(
2016
).
22.
Buhrmester
,
V.
,
D.
Münch
, and
M.
Arens
, “
Analysis of explainers of black box deep neural networks for computer vision: A survey
,”
Mach. Learn. Knowledge Extract.
3
,
966
989
(
2021
).
23.
Carvalho
,
D. V.
,
E. M.
Pereira
, and
J. S.
Cardoso
, “
Machine learning interpretability: A survey on methods and metrics
,”
Electronics
8
,
832
(
2019
).
24.
Chaudhari
,
S.
,
V.
Mithal
,
G.
Polatkan
, and
R.
Ramanath
, “
An attentive survey of attention models
,”
ACM Trans. Intell. Syst. Technol.
12
(5), 1–32 (
2021
).
25.
Lennon
,
K. R.
,
G. H.
McKinley
, and
J. W.
Swan
, “
Scientific machine learning for modeling and simulating complex fluids
,”
Proc. Natl. Acad. Sci. U.S.A.
120
,
e2304669120
(
2023
).
26.
Alzubaidi
,
L.
,
J.
Bai
,
A.
Al-Sabaawi
,
J.
Santamaría
,
A. S.
Albahri
,
B. S. N.
Al-dabbagh
,
M. A.
Fadhel
,
M.
Manoufali
,
J.
Zhang
,
A. H.
Al-Timemy
,
Y.
Duan
,
A.
Abdullah
,
L.
Farhan
,
Y.
Lu
,
A.
Gupta
,
F.
Albu
,
A.
Abbosh
, and
Y.
Gu
, “
A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications
,”
J. Big Data
10
,
46
(
2023
).
27.
Cai
,
S.
,
Z.
Mao
,
Z.
Wang
,
M.
Yin
, and
G. E.
Karniadakis
, “
Physics-informed neural networks (PINNs) for fluid mechanics: A review
,”
Acta Mech. Sin.
37
(12),
1727
1738
(
2022
).
28.
Lawal
,
Z. K.
,
H.
Yassin
,
D. T. C.
Lai
, and
A. C.
Idris
, “
Physics-informed neural network (PINN) evolution and beyond: A systematic literature review and bibliometric analysis
,”
Big Data Cogn. Comput.
6
,
140
(
2022
).
29.
Cai
,
S.
,
Z.
Wang
,
S.
Wang
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for heat transfer problems
,”
J. Heat Transfer
143
,
060801
(
2021
).
30.
Mao
,
Z.
,
A. D.
Jagtap
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for high-speed flows
,”
Comput. Meth. Appl. Mech. Eng.
360
,
112789
(
2020
).
31.
Pang
,
G.
,
L.
Lu
, and
G. E.
Karniadakis
, “
fpinns: Fractional physics-informed neural networks
,”
SIAM J. Scient. Comput.
41
,
A2603
A2626
(
2019
).
32.
Misyris
,
G. S.
,
A.
Venzke
, and
S.
Chatzivasileiadis
, “
Physics-informed neural networks for power systems
,”
2020 IEEE Power & Energy Society General Meeting (PESGM)
, Montreal, QC, Canada, 2020 (IEEE, Piscataway, NJ,
2020
), pp. 1–5.
33.
Costabal
,
F. S.
,
Y.
Yang
,
P.
Perdikaris
,
D. E.
Hurtado
, and
E.
Kuhl
, “
Physics-informed neural networks for cardiac activation mapping
,”
Front. Phys.
8
,
42
(
2020
).
34.
Jeong
,
H.
,
J.
Bai
,
C.
Batuwatta-Gamage
,
C.
Rathnayaka
,
Y.
Zhou
, and
Y.
Gu
, “
A physics-informed neural network-based topology optimization (pinnto) framework for structural optimization
,”
Eng. Struct.
278
,
115484
(
2023
).
35.
Bastek
,
J.-H.
, and
D. M.
Kochmann
, “
Physics-informed neural networks for shell structures
,”
Eur. J. Mech. A/Solids
97
,
104849
(
2023
).
36.
McClenny
,
L. D.
, and
U. M.
Braga-Neto
, “
Self-adaptive physics-informed neural networks
,”
J. Comput. Phys.
474
,
111722
(
2023
).
37.
Lennon
,
K. R.
,
G. H.
McKinley
, and
J. W.
Swan
, “
A data-driven method for automated data superposition with applications in soft matter science
,”
Data-Centric Eng.
4
,
e13
(
2023
).
38.
Young
,
C. D.
,
P. T.
Corona
,
A.
Datta
,
M. E.
Helgeson
, and
M. D.
Graham
, “
Scattering-informed microstructure prediction during lagrangian evolution (simple)—A data-driven framework for modeling complex fluids in flow
,”
Rheol. Acta
62
,
587
604
(
2023
).
39.
Farrington
,
S.
,
S.
Jariwala
,
M.
Armstrong
,
E.
Nigro
,
N. J.
Wagner
, and
A. N.
Beris
, “
Physiology-based parameterization of human blood steady shear rheology via machine learning: A hemostatistics contribution
,”
Rheol. Acta
62
,
491
506
(
2023
).
40.
Mahmoudabadbozchelou
,
M.
, and
S.
Jamali
, “
Rheology-informed neural networks (RhINNs) for forward and inverse metamodelling of complex fluids
,”
Sci. Rep.
11
,
12015
(
2021
).
41.
Mahmoudabadbozchelou
,
M.
,
M.
Caggioni
,
S.
Shahsavari
,
W. H.
Hartt
,
G. E.
Karniadakis
, and
S.
Jamali
, “
Data-driven physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (MFNN) framework
,”
J. Rheol.
65
,
179
198
(
2021
).
42.
Mahmoudabadbozchelou
,
M.
,
G. E.
Karniadakis
, and
S.
Jamali
, “
nn-pinns: Non-newtonian physics-informed neural networks for complex fluid modeling
,”
Soft Matter
18
,
172
185
(
2022
).
43.
Mahmoudabadbozchelou
,
M.
,
K. M.
Kamani
,
S. A.
Rogers
, and
S.
Jamali
, “
Digital rheometer twins: Learning the hidden rheology of complex fluids through rheology-informed graph neural networks
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2202234119
(
2022
).
44.
Mahmoudabadbozchelou
,
M.
, and
S.
Jamali
, “Rheology-informed neural networks for complex fluids,” U.S. patent application 17/581,076 (2022).
45.
Saadat
,
M.
,
M.
Mahmoudabadbozchelou
, and
S.
Jamali
, “
Data-driven selection of constitutive models via rheology-informed neural networks (RhINNs)
,”
Rheol. Acta
61
,
721
732
(
2022
).
46.
Saadat
,
M.
,
D.
Mangal
, and
S.
Jamali
, “
A rheologist’s guideline to data-driven recovery of complex fluids’ parameters from constitutive models
,”
Digit. Discov.
2
,
915
928
(
2023
).
47.
Dabiri
,
D.
,
M.
Saadat
,
D.
Mangal
, and
S.
Jamali
, “
Fractional rheology-informed neural networks for data-driven identification of viscoelastic constitutive models
,”
Rheol. Acta
62
,
557
568
(
2023
).
48.
Nagrani
,
P. P.
,
R. V.
Kulkarni
,
P. U.
Kelkar
,
R. D.
Corder
,
K. A.
Erk
,
A. M.
Marconnet
, and
I. C.
Christov
, “
Data-driven rheological characterization of stress buildup and relaxation in thermal greases
,” (
2023
), .
49.
Mahmoudabadbozchelou
,
M.
,
K. M.
Kamani
,
S. A.
Rogers
, and
S.
Jamali
, “
Unbiased construction of constitutive relations for soft materials from experiments via rheology-informed neural networks
,”
Proc. Natl. Acad. Sci. U.S.A.
121
,
e2313658121
(
2024
).
50.
Panda
,
B.
,
C.
Unluer
, and
M. J.
Tan
, “
Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing
,”
Cement Concrete Compos.
94
,
307
314
(
2018
).
51.
Romagnoli
,
M.
,
C.
Leonelli
,
E.
Kamse
, and
M. L.
Gualtieri
, “
Rheology of geopolymer by DOE approach
,”
Construct. Build. Mater.
36
,
251
258
(
2012
).
52.
Dai
,
X.
,
S.
Aydin
,
M. Y.
Yardimci
, and
G. D.
Schutter
, “
Rheology and structural build-up of sodium silicate- and sodium hydroxide-activated ggbfs mixtures
,”
Cement Concrete Compos.
131
,
104570
(
2022
).
53.
Muthukrishnan
,
S.
,
S.
Ramakrishnan
, and
J.
Sanjayan
, “
Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete
,”
Cement Concrete Compos.
116
,
103899
(
2021
).
54.
Johnson & Johnson Consumer Inc.
, “Johnson’s baby shampoo” (2023).
55.
Meng
,
X.
, and
G. E.
Karniadakis
, “
A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse pde problems
,”
J. Comput. Phys.
401
,
109020
(
2020
).
56.
Fernández-Godino
,
M. G.
, “Review of multi-fidelity models,” (2016).
57.
Morita
,
Y.
,
S.
Rezaeiravesh
,
N.
Tabatabaei
,
R.
Vinuesa
,
K.
Fukagata
, and
P.
Schlatter
, “
Applying bayesian optimization with gaussian process regression to computational fluid dynamics problems
,”
J. Comput. Phys.
449
,
110788
(
2022
).
58.
Arthurs
,
C. J.
, and
A. P.
King
, “
Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the navier-stokes equations
,”
J. Comput. Phys.
438
,
110364
(
2021
).
59.
Zhao
,
L.
,
Z.
Li
,
B.
Caswell
,
J.
Ouyang
, and
G. E.
Karniadakis
, “
Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-newtonian flows
,”
J. Comput. Phys.
363
,
116
127
(
2018
).
60.
Saadat
,
M.
, “
MFNN
,” GitHub, https://github.com/procf/RhINNs/tree/main/MFNN,
accessed July 15
,
2024
.
You do not currently have access to this content.