We propose a torque rheometer coupled with an ultrasonic velocity profiler (UVP) for evaluating multiphase fluids as bulk rheology in oscillatory shear flows. The rheometer mainly consists of wide-gap coaxial cylinders, where the outer cylinder is sinusoidally oscillated and the inner cylinder is fixed to a torque sensor for measuring the wall shear stress. Based on Cauchy’s equation of motion, the spatiotemporal distribution of the shear stress is obtained from the velocity information and the wall shear stress as a boundary condition. This rheometer was applied to a carboxymethyl cellulose aqueous solution and compared with a standard torque-type rheometer. The results of the evaluated viscoelastic properties agreed well with each other, indicating the validity of the proposed rheometry. To further investigate the applicability of the rheometer to multiphase fluids, suspensions of solid spherical particles with a diameter of 220 μ m with volume fraction of 0.8–3.4% were measured, which are out of the applicable ranges of the standard rheometer. For volume fractions up to 3% where the UVP measurement is available, the relative viscosity agrees well with a theoretical formula. This indicates the applicability of the method to examine multiphase fluids.

1.
Llewellin
,
E.
, and
M.
Manga
, “
Bubble suspension rheology and implications for conduit flow
,”
J. Volcanol. Geotherm. Res.
143
,
205
217
(
2005
).
2.
Lewis
,
T.
, and
L.
Nielsen
, “
Viscosity of dispersed and aggregated suspensions of spheres
,”
Trans. Soc. Rheol.
12
,
421
443
(
1968
).
3.
Frankel
,
N.
, and
A.
Acrivos
, “
The constitutive equation for a dilute emulsion
,”
J. Fluid Mech.
44
,
65
78
(
1970
).
4.
Choi
,
S. J.
, and
W.
Schowalter
, “
Rheological properties of nondilute suspensions of deformable particles
,”
Phys. Fluids
18
,
420
427
(
1975
).
5.
Rust
,
A.
, and
M.
Manga
, “
Effects of bubble deformation on the viscosity of dilute suspensions
,”
J. Non-Newtonian Fluid Mech.
104
,
53
63
(
2002
).
6.
Llewellin
,
E.
,
H.
Mader
, and
S.
Wilson
, “
The rheology of a bubbly liquid
,”
Proc. R. Soc. London, Ser. A
458
,
987
1016
(
2002
).
7.
Nishinari
,
K.
, “
Rheology in food and eating
,”
Nihon Reoroji Gakkaishi
31
,
41
50
(
2003
).
8.
Tashiro
,
A.
,
A.
Hasegawa
,
K.
Kohyama
,
H.
Kumagai
, and
H.
Kumagai
, “
Relationship between the rheological properties of thickener solutions and their velocity through the pharynx as measured by the ultrasonic pulse doppler method
,”
Biosci., Biotechnol., Biochem.
74
,
1598
1605
(
2010
).
9.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1996
).
10.
Yoshida
,
T.
,
Y.
Tasaka
, and
P.
Fischer
, “
Ultrasonic spinning rheometry test on the rheology of gelled food for making better tasting desserts
,”
Phys. Fluids
31
,
113101
(
2019
).
11.
Mendes
,
P. R. d. S.
,
A. A.
Alicke
, and
R. L.
Thompson
, “
Parallel-plate geometry correction for transient rheometric experiments
,”
Appl. Rheol.
24
,
1
10
(
2014
).
12.
Salmon
,
J.-B.
,
L.
Bécu
,
S.
Manneville
, and
A.
Colin
, “
Towards local rheology of emulsions under couette flow using dynamic light scattering
,”
Eur. Phys. J. E
10
,
209
221
(
2003
).
13.
Gallot
,
T.
,
C.
Perge
,
V.
Grenard
,
M.-A.
Fardin
,
N.
Taberlet
, and
S.
Manneville
, “
Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration
,”
Rev. Sci. Instrum.
84
,
045107
(
2013
).
14.
Bécu
,
L.
,
S.
Manneville
, and
A.
Colin
, “
Yielding and flow in adhesive and nonadhesive concentrated emulsions
,”
Phys. Rev. Lett.
96
,
138302
(
2006
).
15.
Divoux
,
T.
,
D.
Tamarii
,
C.
Barentin
,
S.
Teitel
, and
S.
Manneville
, “
Yielding dynamics of a herschel–bulkley fluid: A critical-like fluidization behaviour
,”
Soft Matter
8
,
4151
4164
(
2012
).
16.
Derakhshandeh
,
B.
,
D.
Vlassopoulos
, and
S. G.
Hatzikiriakos
, “
Thixotropy, yielding and ultrasonic doppler velocimetry in pulp fibre suspensions
,”
Rheol. Acta
51
,
201
214
(
2012
).
17.
Ohie
,
K.
,
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “
Flow prediction of complex fluids in a circular pipe by utilizing a velocity-profiling-assisted rheometer
,”
Ind. Eng. Chem. Res.
61
,
18157
18164
(
2022
).
18.
Saint-Michel
,
B.
,
T.
Gibaud
,
M.
Leocmach
, and
S.
Manneville
, “
Local oscillatory rheology from echography
,”
Phys. Rev. Appl.
5
,
034014
(
2016
).
19.
Saint-Michel
,
B.
,
T.
Gibaud
, and
S.
Manneville
, “
Predicting and assessing rupture in protein gels under oscillatory shear
,”
Soft Matter
13
,
2643
2653
(
2017
).
20.
Shiratori
,
T.
,
Y.
Tasaka
,
Y.
Oishi
, and
Y.
Murai
, “
Ultrasonic velocity profiling rheometry based on a widened circular couette flow
,”
Meas. Sci. Technol.
26
,
085302
(
2015
).
21.
Shiratori
,
T.
,
Y.
Tasaka
, and
Y.
Murai
, “
Rapid rheological characterization of a viscoelastic fluid based on spatiotemporal flow velocimetry
,”
Exp. Therm. Fluid Sci.
71
,
1
13
(
2016
).
22.
Tasaka
,
Y.
,
T.
Kimura
, and
Y.
Murai
, “
Estimating the effective viscosity of bubble suspensions in oscillatory shear flows by means of ultrasonic spinning rheometry
,”
Exp. Fluids
56
,
1867
(
2015
).
23.
Tasaka
,
Y.
,
T.
Yoshida
,
R.
Rapberger
, and
Y.
Murai
, “
Linear viscoelastic analysis using frequency-domain algorithm on oscillating circular shear flows for bubble suspensions
,”
Rheol. Acta
57
,
229
240
(
2018
).
24.
Yoshida
,
T.
,
Y.
Tasaka
, and
Y.
Murai
, “
Efficacy assessments in ultrasonic spinning rheometry: Linear viscoelastic analysis on non-Newtonian fluids
,”
J. Rheol.
63
,
503
517
(
2019
).
25.
Ohie
,
K.
,
T.
Yoshida
,
Y.
Tasaka
, and
Y.
Murai
, “
Effective rheology mapping for characterizing polymer solutions utilizing ultrasonic spinning rheometry
,”
Exp. Fluids
63
,
40
(
2022
).
26.
Ohie
,
K.
,
H.
Chiba
,
S.
Kumagai
,
T.
Yoshida
, and
Y.
Tasaka
, “
A method for evaluating time-resolved rheological functionalities of fluid foods
,”
J. Text. Stud.
53
,
444
452
(
2022
).
27.
Yoshida
,
T.
,
Y.
Tasaka
, and
Y.
Murai
, “
Effective viscoelasticity of non-Newtonian fluids modulated by large-spherical particles aligned under unsteady shear
,”
Phys. Fluids
31
,
103304
(
2019
).
28.
Takeda
,
Y.
, “
Velocity profile measurement by ultrasound doppler shift method
,”
Int. J. Heat Fluid Flow
7
,
313
318
(
1986
).
29.
Takeda
,
Y.
,
Ultrasonic Doppler Velocity Profiler for Fluid Flow
(
Springer
,
Tokyo
,
2012
).
30.
Rodríguez-González
,
F.
,
J.
Pérez-González
,
L.
de Vargas
, and
B. M.
Marín-Santibáñez
, “
Rheo-piv analysis of the slip flow of a metallocene linear low-density polyethylene melt
,”
Rheol. Acta
49
,
145
154
(
2010
).
31.
Pérez-González
,
J.
,
J. J.
López-Durán
,
B. M.
Marín-Santibáñez
, and
F.
Rodríguez-González
, “
Rheo-piv of a yield-stress fluid in a capillary with slip at the wall
,”
Rheol. Acta
51
,
937
946
(
2012
).
32.
Jarny
,
S.
,
N.
Roussel
,
S.
Rodts
,
F.
Bertrand
,
R.
Le Roy
, and
P.
Coussot
, “
Rheological behavior of cement pastes from MRI velocimetry
,”
Cem. Concr. Res.
35
,
1873
1881
(
2005
).
33.
Quinzani
,
L. M.
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction
,”
J. Non-Newtonian Fluid Mech.
52
,
1
36
(
1994
).
34.
Yoshida
,
T.
,
Y.
Tasaka
,
H. J.
Park
, and
Y.
Murai
, “Accuracy and robustness evaluations on algorithms of ultrasonic spinning rheometry,” in Proceedings of 11th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering (2018), pp. 56–59.
35.
Ghannam
,
M. T.
, and
M. N.
Esmail
, “
Rheological properties of carboxymethyl cellulose
,”
J. Appl. Polym. Sci.
64
,
289
301
(
1997
).
36.
Benchabane
,
A.
, and
K.
Bekkour
, “
Rheological properties of carboxymethyl cellulose (CMC) solutions
,”
Colloid Polym. Sci.
286
,
1173
1180
(
2008
).
37.
Einstein
,
A.
, “
Eine neue bestimung der molekuldimensionen
,”
Ann. Phys.
324
,
289
306
(
1906
).
38.
Mueller
,
S.
,
E.
Llewellin
, and
H.
Mader
, “
The rheology of suspensions of solid particles
,”
Proc. R. Soc. A
466
,
1201
1228
(
2010
).
39.
Mader
,
H.
,
E.
Llewellin
, and
S.
Mueller
, “
The rheology of two-phase magmas: A review and analysis
,”
J. Volcanol. Geotherm. Res.
257
,
135
158
(
2013
).
40.
Guth
,
E.
, “
On the hydrodynamical theory of the viscosity of suspensions
,”
Phys. Rev.
53
,
322
325
(
1938
).
41.
Batchelor
,
G. K.
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
42.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
43.
Sandrin
,
L.
,
S.
Manneville
, and
M.
Fink
, “
Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging
,”
Appl. Phys. Lett.
78
,
1155
1157
(
2001
).
44.
Manneville
,
S.
,
L.
Bécu
, and
A.
Colin
, “
High-frequency ultrasonic speckle velocimetry in sheared complex fluids
,”
Eur. Phys. J. Appl. Phys.
28
,
361
373
(
2004
).
45.
Manneville
,
S.
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
,
301
318
(
2008
).
46.
Ovarlez
,
G.
,
F.
Bertrand
, and
S.
Rodts
, “
Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging
,”
J. Rheol.
50
,
259
292
(
2006
).
You do not currently have access to this content.