Thixotropy is characterized by a time-dependent rise in viscosity under no or weak flow conditions and a decrease in viscosity over time when subjected to strong flow conditions. The characteristic timescale associated with the thixotropic phenomenon, particularly how the viscosity increases with time, has been termed the thixotropic timescale. Several approaches have been suggested in the literature for estimating the thixotropic timescale. The most prominent approach, however, infers it from a specific form of a kinetic expression for structure parameter evolution. In this paper, we study the various kinds of structural kinetic models. By carefully analyzing the same, we propose a parameter for the thixotropic timescale associated with the most generic form of kinetic expression for structure parameter evolution. We observe that increasing the thixotropic timescale weakens the thixotropic character of a system when the viscosity of the structural kinetic model continuously increases over time and eventually diverges under quiescent conditions. We also propose a new phenomenological measure of the thixotropic timescale: τ t h i x = ( d ln η / d t ) 1, where η is viscosity and t is time. The proposed definition allows a straightforward and unique way to determine the thixotropic timescale through experiments and agrees well with the conventional notion of thixotropy.

1.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
2.
Dimitriou
,
C. J.
, and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
3.
Agarwal
,
M.
,
S.
Sharma
,
V.
Shankar
, and
Y. M.
Joshi
, “
Distinguishing thixotropy from viscoelasticity
,”
J. Rheol.
65
,
663
680
(
2021
).
4.
Bhattacharyya
,
T.
,
A. R.
Jacob
,
G.
Petekidis
, and
Y. M.
Joshi
, “
On the nature of flow curve and categorization of thixotropic yield stress materials
,”
J. Rheol.
67
,
461
477
(
2023
).
5.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newton. Fluid Mech.
102
,
157
178
(
2002
).
6.
Coussot
,
P.
, “
Rheophysics of pastes: A review of microscopic modelling approaches
,”
Soft Matter
3
,
528
540
(
2007
).
7.
Larson
,
R. G.
, and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
8.
Jamali
,
S.
, and
G. H.
McKinley
, “
The mnemosyne number and the rheology of remembrance
,”
J. Rheol.
66
,
1027
1039
(
2022
).
9.
Sen
,
S.
, and
R. H.
Ewoldt
, “
Thixotropic spectra and Ashby-style charts for thixotropy
,”
J. Rheol.
66
,
1041
1053
(
2022
).
10.
Wang
,
Y.
, and
R. H.
Ewoldt
, “
Thixotropy, antithixotropy, and viscoelasticity in hysteresis
,”
J. Rheol.
67
,
1199
1219
(
2023
).
11.
Barnes
,
H. A.
, “
Thixotropy—A review
,”
J. Non-Newton. Fluid Mech.
70
,
1
33
(
1997
).
12.
Péterfi
,
T.
, “
Die abhebung der befruchtungsmembran bei seeigeleiern—eine kolloidchemische analyse des befruchtungsvorganges
,”
Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen
112
,
660
695
(
1927
).
13.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
14.
Rubio-Hernández
,
F. J.
,
J. H.
Sánchez-Toro
, and
N. M.
Páez-Flor
, “
Testing shear thinning/thixotropy and shear thickening/antithixotropy relationships in a fumed silica suspension
,”
J. Rheol.
64
,
785
797
(
2020
).
15.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002
).
16.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
018304
(
2013
).
17.
Radhakrishnan
,
R.
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
,
1834
1852
(
2017
).
18.
Jamali
,
S.
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
,
048003
(
2017
).
19.
Javadi
,
E.
, and
S.
Jamali
, “
Thixotropy and rheological hysteresis in blood flow
,”
J. Chem. Phys.
156
, 084901 (
2022
).
20.
Sharma
,
S.
,
V.
Shankar
, and
Y. M.
Joshi
, “
Viscoelasticity and rheological hysteresis
,”
J. Rheol.
67
,
139
155
(
2023
).
21.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
, Cambridge,
2012
).
22.
Joshi
,
Y. M.
, “
Dynamics of colloidal glasses and gels
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
181
202
(
2014
).
23.
Joshi
,
Y. M.
, “
A model for aging under deformation field, residual stresses and strains in soft glassy materials
,”
Soft Matter
11
,
3198
3214
(
2015
).
24.
Goodeve
,
C. F.
, and
G. W.
Whitfield
, “
The measurement of thixotropy in absolute units
,”
Trans. Faraday Soc.
34
,
511
520
(
1938
).
25.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Mapping thixo-elasto-visco-plastic behavior
,”
Rheol. Acta
56
,
195
210
(
2017
).
26.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
Letter to the Editor: Modeling the nonmonotonic time-dependence of viscosity bifurcation in thixotropic yield-stress fluids
,”
J. Rheol.
63
,
673
675
(
2019
).
27.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Avalanche behavior in yield stress fluids
,”
Phys. Rev. Lett.
88
,
175501
(
2002
).
28.
Joshi
,
Y. M.
, “
Thixotropy, nonmonotonic stress relaxation, and the second law of thermodynamics
,”
J. Rheol.
66
,
111
123
(
2022
).
29.
Spyridakis
,
A.
,
P.
Moschopoulos
,
S.
Varchanis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Thixo-elastoviscoplastic modeling of human blood
,”
J. Rheol.
68
,
1
23
(
2024
).
30.
Varchanis
,
S.
,
G.
Makrigiorgos
,
P.
Moschopoulos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Modeling the rheology of thixotropic elasto-visco-plastic materials
,”
J. Rheol.
63
,
609
639
(
2019
).
31.
Dullaert
,
K.
, and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newton. Fluid Mech.
139
,
21
30
(
2006
).
32.
Joshi
,
Y. M.
, and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
,
521
549
(
2018
).
33.
Kaushal
,
M.
, and
Y. M.
Joshi
, “
Linear viscoelasticity of soft glassy materials
,”
Soft Matter
10
,
1891
1894
(
2014
).
34.
Rathinaraj
,
J. D. J.
,
K. R.
Lennon
,
M.
Gonzalez
,
A.
Santra
,
J. W.
Swan
, and
G. H.
McKinley
, “
Elastoviscoplasticity, hyperaging, and time–age-time–temperature superposition in aqueous dispersions of bentonite clay
,”
Soft Matter
19
,
7293
7312
(
2023
).
35.
Cloitre
,
M.
,
R.
Borrega
, and
L.
Leibler
, “
Rheological aging and rejuvenation in microgel pastes
,”
Phys. Rev. Lett.
85
,
4819
4822
(
2000
).
36.
Derec
,
C.
,
G.
Ducouret
,
A.
Ajdari
, and
F.
Lequeux
, “
Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles
,”
Phys. Rev. E
67
,
061403
(
2003
).
37.
Wei
,
Y.
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
38.
Hodge
,
I. M.
, “
Enthalpy relaxation and recovery in amorphous materials
,”
J. Non-Cryst. Solids
169
,
211
266
(
1994
).
39.
Hutchinson
,
J. M.
, “
Physical aging of polymers
,”
Prog. Polym. Sci.
20
,
703
760
(
1995
).
40.
Kovacs
,
A. J.
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
, “
Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory
,”
J. Polym. Sci.: Polym. Phys. Ed.
17
,
1097
1162
(
1979
).
41.
Moller
,
P.
,
A.
Fall
,
V.
Chikkadi
,
D.
Derks
, and
D.
Bonn
, “
An attempt to categorize yield stress fluid behaviour
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
367
,
5139
5155
(
2009
).
42.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
43.
Coussot
,
P.
, and
S. A.
Rogers
, “
Oldroyd's model and the foundation of modern rheology of yield stress fluids
,”
J. Non-Newton. Fluid Mech.
295
,
104604
(
2021
).
44.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
Time-dependent yield stress materials
,”
Curr. Opin. Colloid Interface Sci.
43
,
15
25
(
2019
).
45.
Mewis
,
J.
, “
Thixotropy—A general review
,”
J. Non-Newton. Fluid Mech.
6
,
1
20
(
1979
).
46.
Struik
,
L. C. E.
,
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier
,
Houston, TX
,
1978
).
47.
Agarwal
,
M.
, and
Y. M.
Joshi
, “
Signatures of physical aging and thixotropy in aqueous dispersion of Carbopol
,”
Phys. Fluids
31
,
063107
(
2019
).
48.
Agarwal
,
M.
,
M.
Kaushal
, and
Y. M.
Joshi
, “
Signatures of overaging in an aqueous dispersion of Carbopol
,”
Langmuir
36
,
14849
14863
(
2020
).
49.
Segrè
,
P.
,
V.
Prasad
,
A.
Schofield
, and
D.
Weitz
, “
Glasslike kinetic arrest at the colloidal-gelation transition
,”
Phys. Rev. Lett.
86
,
6042
6045
(
2001
).
50.
Mours
,
M.
, and
H. H.
Winter
, “
Time-resolved rheometry
,”
Rheol. Acta
33
,
385
397
(
1994
).
51.
Shahin
,
A.
, and
Y. M.
Joshi
, “
Hyper-aging dynamics of nanoclay suspension
,”
Langmuir
28
,
5826
5833
(
2012
).
52.
Negi
,
A. S.
, and
C. O.
Osuji
, “
Dynamics of internal stresses and scaling of strain recovery in an aging colloidal gel
,”
Phys. Rev. E
80
,
010404
(
2009
).
53.
Jariwala
,
S.
,
R.
Song
,
J. B.
Hipp
,
R. B.
Diemer
,
N. J.
Wagner
, and
A. N.
Beris
, “
A polydisperse model for thixotropic elasto-viscoplastic suspensions of aggregating particles using population balances
,”
AIChE J.
69
,
e18184
(
2023
).
You do not currently have access to this content.