The concentrated noncolloidal suspensions show complex rheological behavior, which is related to the existence of contact stress. However, determining the contact stress in time-varying flow like oscillatory shear is challenging. Herein, we propose a contact stress decomposition method to decompose the total stress directly into contact stress and hydrodynamic stress in large amplitude oscillatory shear (LAOS). The results of hydrodynamic stress and contact stress are consistent with those determined by the shear reversal experiment. The contact stress decomposition also explains the failure of the Cox–Merz rule in noncolloidal suspensions because the particle contacts exist in steady shear but are absent in small amplitude oscillatory shear. The intracycle and intercycle of contact stress are further analyzed through the general geometric average method. The intracycle behaviors exhibit strain hardening, strain softening, and shear thickening. The intercycle behaviors show bifurcations in stress-strain and stress-strain rate relations, where the transition strains at different concentrations define the state boundaries between the discrete particle contacts, the growing of particle contacts, and the saturated contacts. We also established a phenomenological constitutive model using a structural parameter to describe the shear effect on the buildup and breakdown of particle contacts. The contact stress of noncolloidal suspensions with wide ranges of particle concentrations and strain amplitudes under LAOS can be well described by the model.

1.
Lobry
,
L.
,
E.
Lemaire
,
F.
Blanc
,
S.
Gallier
, and
F.
Peters
, “
Shear thinning in non-Brownian suspensions explained by variable friction between particles
,”
J. Fluid Mech.
860
,
682
710
(
2019
).
2.
Arshad
,
M.
,
A.
Maali
,
C.
Claudet
,
L.
Lobry
,
F.
Peters
, and
E.
Lemaire
, “
An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions
,”
Soft Matter
17
(
25
),
6088
6097
(
2021
).
3.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
(
6
),
1693
1724
(
2014
).
4.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
(
21
),
218301
(
2013
).
5.
Guo
,
Y.
,
W.
Yu
,
Y.
Xu
, and
C.
Zhou
, “
Liquid-to-solid transition of concentrated suspensions under complex transient shear histories
,”
Phys. Rev. E
80
(
6
),
061404
(
2009
).
6.
Nam
,
J. G.
,
K. H.
Ahn
,
S. J.
Lee
, and
K.
Hyun
, “
Strain stiffening of non-colloidal hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region
,”
Rheol. Acta
50
(
11–12
),
925
936
(
2011
).
7.
Peters
,
I. R.
,
S.
Majumdar
, and
H. M.
Jaeger
, “
Direct observation of dynamic shear jamming in dense suspensions
,”
Nature
532
(
7598
),
214
217
(
2016
).
8.
Gillissen
,
J. J. J.
,
C.
Ness
,
J. D.
Peterson
,
H. J.
Wilson
, and
M. E.
Cates
, “
Constitutive model for shear-thickening suspensions: Predictions for steady shear with superposed transverse oscillations
,”
J. Rheol.
64
(
2
),
353
365
(
2020
).
9.
Sierou
,
A.
, and
J. F.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
(
5
),
1031
1056
(
2002
).
10.
Larson
,
R. G.
,
Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
11.
Denn
,
M. M.
, and
J. F.
Morris
, “
Rheology of non-Brownian suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
(
1
),
203
228
(
2014
).
12.
Harris
,
J.
, “
Response of time-dependent materials to oscillatory motion
,”
Nature
207
(
4998
),
744
(
1965
).
13.
Liu
,
Z.
,
Z.
Xiong
,
Z.
Nie
, and
W.
Yu
, “
Correlation between linear and nonlinear material functions under large amplitude oscillatory shear
,”
Phys. Fluids
32
(
9
),
93105
(
2020
).
14.
Narumi
,
T.
,
H.
See
,
A.
Suzuki
, and
T.
Hasegawa
, “
Response of concentrated suspensions under large amplitude oscillatory shear flow
,”
J. Rheol.
49
(
1
),
71
85
(
2005
).
15.
Lee
,
Y. K.
,
J.
Nam
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: Strain stiffening in large amplitude oscillatory shear
,”
Soft Matter
11
(
20
),
461
474
(
2015
).
16.
Natalia
,
I.
,
R. H.
Ewoldt
, and
E.
Koos
, “
Particle contact dynamics as the origin for noninteger power expansion rheology in attractive suspension networks
,”
J. Rheol.
66
(
1
),
17
30
(
2022
).
17.
Park
,
C. H.
,
K. H.
Ahn
, and
S. J.
Lee
, “
Stress decomposition analysis in hard and soft sphere suspensions: Double peaks in the elastic stress of hard sphere suspensions and its characteristic and structural origin
,”
Rheol. Acta
57
(
1
),
15
27
(
2018
).
18.
Minale
,
M.
,
R.
Martone
, and
C.
Carotenuto
, “
Microstructural changes of concentrated Newtonian suspensions in the first oscillation cycles probed with linear and non-linear rheology
,”
Soft Matter
18
(
32
),
6051
6065
(
2022
).
19.
Ong
,
E. Y. X.
,
M.
Ramaswamy
,
R.
Niu
,
N. Y. C.
Lin
,
A.
Shetty
,
R. N.
Zia
,
G. H.
McKinley
, and
I.
Cohen
, “
Stress decomposition in LAOS of dense colloidal suspensions
,”
J. Rheol.
64
(
2
),
343
351
(
2020
).
20.
Guazzelli
,
É
,
J. F.
Morris
, and
S.
Pic
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University
,
Cambridge
,
2011
), Vol. 45.
21.
Batchelor
,
G. K.
, and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
(
2
),
375
400
(
1972
).
22.
Gallier
,
S.
,
E.
Lemaire
,
F.
Peters
, and
L.
Lobry
, “
Rheology of sheared suspensions of rough frictional particles
,”
J. Fluid Mech.
757
,
514
549
(
2014
).
23.
Kolli
,
V. G.
,
E. J.
Pollauf
, and
F.
Gadala-Maria
, “
Transient normal stress response in a concentrated suspension of spherical particles
,”
J. Rheol.
46
(
1
),
321
334
(
2002
).
24.
Narumi
,
T.
,
H.
See
,
Y.
Honma
,
T.
Hasegawa
,
T.
Takahashi
, and
N.
Phan-Thien
, “
Transient response of concentrated suspensions after shear reversal
,”
J. Rheol.
46
(
1
),
295
305
(
2002
).
25.
Gadala-Maria
,
F.
, and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
(
6
),
799
814
(
1980
).
26.
Lin
,
N. Y. C.
,
C.
Ness
,
M. E.
Cates
,
J.
Sun
, and
I.
Cohen
, “
Tunable shear thickening in suspensions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
39
),
10774
10778
(
2016
).
27.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
(
22
),
228304
(
2015
).
28.
Peters
,
F.
,
G.
Ghigliotti
,
S.
Gallier
,
F.
Blanc
,
E.
Lemaire
, and
L.
Lobry
, “
Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: A numerical study
,”
J. Rheol.
60
,
715
732
(
2016
).
29.
Papadopoulou
,
A.
,
J. J.
Gillissen
,
H. J.
Wilson
,
M. K.
Tiwari
, and
S.
Balabani
, “
On the shear thinning of non-Brownian suspensions: Friction or adhesion?
,”
J. Non-Newton. Fluid Mech.
281
,
104298
(
2020
).
30.
Cross
,
M. M.
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
(
5
),
417
437
(
1965
).
31.
Carotenuto
,
C.
,
G.
Rexha
,
R.
Martone
, and
M.
Minale
, “
The microstructural change causing the failure of the Cox-Merz rule in Newtonian suspensions: Experiments and simulations
,”
Rheol. Acta
60
(
6–7
),
309
325
(
2021
).
32.
Helminiak
,
T. E.
, and
L.
Cerny
, “
Application of Ree-Eyring generalized flow theory to dilution solutions of potassium-p-polystyrene sulfonate
,”
J. Polym. Sci.
31
(
122
),
230
234
(
1958
).
33.
Guazzelli
,
É
, and
O.
Pouliquen
, “
Rheology of dense granular suspensions
,”
J. Fluid Mech.
852
,
1
73
(
2018
).
34.
Dai
,
S.
, and
R. I.
Tanner
, “
Reversing strains revisited
,”
J. Non-Newton. Fluid Mech.
310
,
104945
(
2022
).
35.
Barnes
,
H. A.
,
M. F.
Edwards
, and
L. V.
Woodcock
, “
Applications of computer simulations to dense suspension rheology
,”
Chem. Eng. Sci.
42
(
4
),
591
608
(
1987
).
36.
Cui
,
W.
,
W.
You
, and
W.
Yu
, “
Mechanism of mechanical reinforcement for weakly attractive nanocomposites in glassy and rubbery states
,”
Macromolecules
54
(
2
),
824
834
(
2021
).
37.
Zhang
,
A.
,
C.
Zhu
,
D.
Pan
, and
Y.
Lin
, “
Study on strain stiffening of non-colloidal suspension in oscillating shear by a subsequent steady shear test
,”
Colloid Surf. A
618
,
126401
(
2021
).
38.
Wang
,
Z.
,
Y.
Wang
,
Y.
Su
,
Q.
Xing
, and
A. J.
Müller
, “
Strain controlled shear hardening behavior in suspensions of alumina spheres in a polydimethylsiloxane oligomer matrix
,”
Polym. Adv. Technol.
34
(
7
),
2134
2141
(
2023
).
39.
Zhang
,
X. Z.
,
W. H.
Li
, and
X. L.
Gong
, “
The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper
,”
Smart Mater. Struct.
17
(
3
),
035027
(
2008
).
40.
Fall
,
A.
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Shear thickening of cornstarch suspensions
,”
J. Rheol.
56
(
3
),
575
591
(
2012
).
41.
Chang
,
L.
,
K.
Friedrich
,
A. K.
Schlarb
,
R.
Tanner
, and
L.
Ye
, “
Shear-thickening behaviour of concentrated polymer dispersions under steady and oscillatory shear
,”
J. Mater. Sci
46
(
2
),
339
346
(
2011
).
42.
Lee
,
Y. S.
, and
N. J.
Wagner
, “
Dynamic properties of shear thickening colloidal suspensions
,”
Rheol. Acta
42
(
3
),
199
208
(
2003
).
43.
Collins
,
E. A.
,
D. J.
Hoffmann
, and
P. L.
Soni
, “
Rheology of PVC dispersions. I. Effect of particle size and particle size distribution
,”
J. Colloid Interface Sci.
71
(
1
),
21
29
(
1979
).
44.
Gürgen
,
S.
,
W.
Li
, and
M. C.
Kuşhan
, “
The rheology of shear thickening fluids with various ceramic particle additives
,”
Mater. Des.
104
,
312
319
(
2016
).
45.
Ness
,
C.
,
Z.
Xing
, and
E.
Eiser
, “
Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point
,”
Soft Matter
13
(
19
),
3664
3674
(
2017
).
46.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
(
3
),
747
758
(
2005
).
47.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
48.
Yu
,
W.
,
P.
Wang
, and
C.
Zhou
, “
General stress decomposition in nonlinear oscillatory shear flow
,”
J. Rheol.
53
(
1
),
215
238
(
2009
).
49.
Rogers
,
S. A.
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach
,”
J. Rheol.
56
(
5
),
1129
1151
(
2012
).
50.
Nettesheim
,
F.
, and
S. A.
Rogers
, “
The unification of disparate rheological measures in oscillatory shearing
,”
Phys. Fluids
31
(
7
),
073107
(
2019
).
51.
Yu
,
W.
,
Y.
Du
, and
C.
Zhou
, “
A geometric average interpretation on the nonlinear oscillatory shear
,”
J. Rheol.
57
(
4
),
1147
1175
(
2013
).
52.
Breedveld
,
V.
,
D.
van den Ende
,
R.
Jongschaap
, and
J.
Mellema
, “
Shear-induced diffusion and rheology of noncolloidal suspensions: Time scales and particle displacements
,”
J. Chem. Phys.
114
(
13
),
5923
5936
(
2001
).
53.
Gallier
,
S.
,
F.
Peters
, and
L.
Lobry
, “
Simulations of sheared dense noncolloidal suspensions: Evaluation of the role of long-range hydrodynamics
,”
Phys. Rev. Fluids
3
(
4
),
042301
(
2018
).
54.
Blanc
,
F.
,
E.
D'Ambrosio
,
L.
Lobry
,
F.
Peters
, and
E.
Lemaire
, “
Universal scaling law in frictional non-Brownian suspensions
,”
Phys. Rev. Fluids
3
(
11
),
114303
(
2018
).
55.
Lemaire
,
E.
,
F.
Blanc
,
C.
Claudet
,
S.
Gallier
,
L.
Lobry
, and
F.
Peters
, “
Rheology of non-Brownian suspensions: A rough contact story
,”
Rheol. Acta
62
(
5–6
),
253
268
(
2023
).
56.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
(
2
),
191
212
(
2010
).
57.
Yang
,
K.
,
Z.
Liu
,
J.
Wang
, and
W.
Yu
, “
Stress bifurcation in large amplitude oscillatory shear of yield stress fluids
,”
J. Rheol.
62
(
1
),
89
106
(
2018
).
58.
Mahmud
,
A.
,
S.
Dai
, and
R. I.
Tanner
, “
Oscillatory strain with superposed steady shearing in noncolloidal suspensions
,”
J. Rheol.
64
(
5
),
1087
1106
(
2020
).
59.
Pradipto
, and
H.
Hayakawa
, “
Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: Shear jammed and fragile states
,”
Soft Matter
16
(
4
),
945
959
(
2020
).
60.
Li
,
B.
,
Y.
Guo
,
P.
Steeman
,
M.
Bulters
, and
W.
Yu
, “
Shear-induced breakdown and agglomeration in nanoparticles filled polymer: The shift of phase boundary and kinetics
,”
J. Rheol.
65
(
3
),
291
309
(
2021
).
61.
Zhang
,
H.
,
W.
You
,
F.
Bian
, and
W.
Yu
, “
Heterogeneous percolation in poly(methylvinylsiloxane)/silica nanocomposites: The role of polymer–particle interaction
,”
Macromolecules
55
(
19
),
8834
8845
(
2022
).
62.
Hao
,
B.
,
B.
Li
, and
W.
Yu
, “
Nonequilibrium structure diagram of pendular suspensions under large-amplitude oscillatory shear
,”
Langmuir
37
(
20
),
6208
6218
(
2021
).
63.
Nott
,
P. R.
, and
J. F.
Brady
, “
Pressure-driven flow of suspensions: Simulation and theory
,”
J. Fluid Mech.
275
,
157
199
(
1994
).
64.
Morris
,
J. F.
, and
F.
Boulay
, “
Curvilinear flows of noncolloidal suspensions: The role of normal stresses
,”
J. Rheol.
43
(
5
),
1213
1237
(
1999
).
65.
Phan-Thien
,
N.
, “
Constitutive equation for concentrated suspensions in Newtonian liquids
,”
J. Rheol.
39
(
4
),
679
695
(
1995
).
66.
Yapici
,
K.
,
R. L.
Powell
, and
R. J.
Phillips
, “
Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow
,”
Phys. Fluids
21
(
5
),
053302
(
2009
).
67.
Ozenda
,
O.
,
P.
Saramito
, and
G.
Chambon
, “
A new rate-independent tensorial model for suspensions of noncolloidal rigid particles in Newtonian fluids
,”
J. Rheol.
62
(
4
),
889
903
(
2018
).
68.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
(
9
),
098302
(
2014
).
69.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newton. Fluid Mech.
102
(
2
),
157
178
(
2002
).
70.
Larson
,
R. G.
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
(
3
),
595
611
(
2015
).
71.
Ramaswamy
,
M.
,
I.
Griniasty
,
D. B.
Liarte
,
A.
Shetty
,
E.
Katifori
,
E.
Del Gado
,
J. P.
Sethna
,
B.
Chakraborty
, and
I.
Cohen
, “
Universal scaling of shear thickening transitions
,”
J. Rheol.
67
(
6
),
1189
1197
(
2023
).
72.
Goddard
,
J. D.
, “
A dissipative anisotropic fluid model for non-colloidal particle dispersions
,”
J. Fluid Mech.
568
,
1
17
(
2006
).
73.
See supplementary material online for Fig. S1: the particle size and quantity distribution; Fig. S2: the relative error between the two methods in determining η H and η H + η C; Fig. S3: the stress-strain rate curves of 44.1% suspension; Fig. S4: the ratio of maximum contact stress versus strain amplitude; Fig. S5: Δ γ c versus strain amplitude; Fig. S6: Δ γ c versus the apparent critical strain γ c , L of strain hardening; Fig. S7: representative stress versus time curves for shear cessation experiment; Fig. S8: comparison of the SR experiment and the SD method under γ 0 = 20; Fig. S9: stress-strain rate relation of 44.1% suspension under different strain amplitudes; Fig. S10: comparisons on η H and η C between this work and Lemaire et al. [55]; Fig. S11: stress-strain, stress-strain rate curve at strain amplitude 0.25, and the moduli versus frequency at small strain amplitude; Fig. S12: the comparison of the contact stress obtained by the stress decomposition method and SP model; Fig. S13: A 12 , m a x versus σ C , m a x and A 12 , m a x versus σ m a x; Fig. S14: A11 versus strain, A11 versus strain rate, N1 and contact stress versus strain, N1 and contact stress versus strain rate under strain amplitude 2.5; Fig. S15: ratio between N1 and shear stress and maximum of N1/σ versus particle concentration.

Supplementary Material

You do not currently have access to this content.