The present article investigates the effect of thermal shrinkage on the yielding behavior of waxy oil gel. The paper compares constant gap and constant normal force measurement protocols to examine the effect of measurement protocol on the rheological behavior of thermoreversible gel. The findings of this study reveal that the extent of stress overshoot and yield stress in a constant shear-rate start-up flow shows a lower magnitude in a constant gap protocol compared to a constant normal force protocol. The decrease in gel strength in the former protocol is mainly attributed to the formation of voids. These voids cause localized fractures within the crystal network. In contrast, in the constant normal force measurement protocol, gel contraction is compensated by utilizing a variable gap setting. Variable gaps compensate for the lower specific volume of the gel after crystallization, minimizing void formation and subsequent rupture of the crystal network. Hence, the gel network formed using the constant normal force protocol is more homogeneous, eliminating the uncertainties in yield stress measurement. Finally, the effect of thermal history, wax content, and aging period on the yield stress values highlights notable findings. Contrary to the conventionally accepted results, the aging period is found to impact the yield stress negatively, and a nonmonotonic relationship between the cooling rate and yield stress is noticed under the constant gap protocol. Thus, the results obtained under the constant normal force protocol are more reliable and can help in developing a fundamental understanding of the yielding behavior.

1.
Owens
,
C. E.
,
A. J.
Hart
, and
G. H.
McKinley
, “
Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes
,”
J. Rheol.
64
,
643
662
(
2020
).
2.
Coussot
,
P.
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
(
3
),
573
589
(
2002
).
3.
Dinkgreve
,
M.
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring ‘the’ yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
4.
Nelson
,
A. Z.
,
K. S.
Schweizer
,
B. M.
Rauzan
,
R. G.
Nuzzo
,
J.
Vermant
, and
R. H.
Ewoldt
, “
Designing and transforming yield-stress fluids
,”
Curr. Opin. Solid State Mater. Sci.
23
,
100758
(
2019
).
5.
Liddell
,
P. V.
, and
D. V.
Boger
, “
Yield stress measurements with the vane
,”
J. Non-Newtonian Fluid Mech.
63
,
235
261
(
1996
).
6.
Kumar
,
L.
, “
An algebraic thixotropic elasto-visco-plastic constitutive equation describing pre-yielding solid and post-yielding liquid behaviours
,”
J. Non-Newtonian Fluid Mech.
321
,
105105
(
2023
).
7.
Barnes
,
H. A.
, “
The yield stress—A review or ‘παντα ρɛi’—Everything flows?
,”
J. Non-Newtonian Fluid Mech.
81
,
133
178
(
1999
).
8.
de Souza Mendes
,
P. R.
, and
R. L.
Thompson
, “
Time-dependent yield stress materials
,”
Curr. Opin. Colloid Interface Sci.
43
,
15
25
(
2019
).
9.
Andrade
,
D. E. V.
,
R. R.
Fernandes
,
T. G. M.
Santos
,
E. V.
Ceccon
,
A. C. B.
Cruz
,
A. T.
Franco
, and
C. O. R.
Negrão
, “
Curve-fitting equation for prediction of the start-up stress overshoot of an oil-based drilling fluid
,”
J. Pet. Sci. Eng.
146
,
902
908
(
2016
).
10.
Negrão
,
C. O. R.
,
A. T.
Franco
, and
L. L. V.
Rocha
, “
A weakly compressible flow model for the restart of thixotropic drilling fluids
,”
J. Non-Newtonian Fluid Mech.
166
,
1369
1381
(
2011
).
11.
Wardhaugh
,
L. T.
, and
D. V.
Boger
, “
Flow characteristics of waxy crude oils: Application to pipeline design
,”
AIChE J.
37
(
6
),
871
885
(
1991
).
12.
Davidson
,
M. R.
,
Q. D.
Nguyen
,
C.
Chang
, and
H. P.
Rønningsen
, “
A model for restart of a pipeline with compressible gelled waxy crude oil
,”
J. Non-Newtonian Fluid Mech.
123
(
2–3
),
269
280
(
2004
).
13.
Singh
,
P.
,
H. S.
Fogler
, and
N.
Nagarajan
, “
Prediction of the wax content of the incipient wax-oil gel in a pipeline: An application of the controlled-stress rheometer
,”
J. Rheol.
43
(
6
),
1437
1459
(
1999
).
14.
Shinde
,
S. B.
,
L.
Tikariha
, and
L.
Kumar
, “
Experimental and numerical investigation of the degelation behavior and non-isothermal flow restart of a waxy oil pipeline
,”
ACS Omega
8
(
29
),
25972
25987
(
2023
).
15.
Venkatesan
,
R.
,
J.-A.
Östlund
,
H.
Chawla
,
P.
Wattana
,
M.
Nydén
, and
H. S.
Fogler
, “
The effect of asphaltenes on the gelation of waxy oils
,”
Energy Fuels
17
(
6
),
1630
1640
(
2003
).
16.
Huang
,
Q.
,
H.
Li
,
Y.
Xie
,
Y.
Ding
,
Y.
Zhuang
,
C.
Chen
,
S.
Han
, and
J.
Zhang
, “
Electrorheological behaviors of waxy crude oil gel
,”
J. Rheol.
65
(
2
),
103
112
(
2021
).
17.
Ansari
,
F.
,
S. B.
Shinde
,
K. G.
Paso
,
J.
Sjöblom
, and
L.
Kumar
, “
Chemical additives as flow improvers for waxy crude oil and model oil: A critical review analyzing structure-efficacy relationships
,”
Energy Fuels
36
(
7
),
3372
3393
(
2022
).
18.
Sanyal
,
A.
,
L.
Tikariha
, and
L.
Kumar
, “
The effects of partial preheating on pressure propagation and flow-restart phenomena in a clogged pipeline with a weakly compressible gel
,”
Phys. Fluids
33
,
043101
(
2021
).
19.
Lopes-da-Silva
,
J. A.
, and
J. A. P.
Coutinho
, “
Analysis of the isothermal structure development in waxy crude oils under quiescent conditions
,”
Energy Fuels
21
,
3612
3617
(
2007
).
20.
Geri
,
M.
,
R.
Venkatesan
,
K.
Sambath
, and
G. H.
McKinley
, “
Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils
,”
J. Rheol.
61
,
427
454
(
2017
).
21.
Roenningsen
,
H. P.
,
B.
Bjoerndal
,
A. B.
Hansen
, and
W. B.
Pedersen
, “
Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties
,”
Energy Fuel
5
,
895
908
(
1991
).
22.
Li
,
H.
,
J.
Zhang
, and
D.
Yan
, “
Correlations between the pour point/gel point and the amount of precipitated wax for waxy crudes
,”
Pet. Sci. Technol.
23
,
1313
1322
(
2005
).
23.
Mendes
,
R.
,
G.
Vinay
,
G.
Ovarlez
, and
P.
Coussot
, “
Modeling the rheological behavior of waxy crude oils as a function of flow and temperature history
,”
J. Rheol.
59
,
703
732
(
2015
).
24.
Vargas
,
G. G.
,
E. J.
Soares
,
R. L.
Thompson
,
G. A. B.
Sandoval
,
R. M.
Andrade
,
F. B.
Campos
, and
A.
Teixeira
, “
Emulsion effects on the yield stress of gelled waxy crude oils
,”
Fuel
222
,
444
456
(
2018
).
25.
Liu
,
H.
,
Y.
Lu
, and
J.
Zhang
, “
A comprehensive investigation of the viscoelasticity and time-dependent yielding transition of waxy crude oils
,”
J. Rheol.
62
,
527
541
(
2018
).
26.
Fernandes
,
R. R.
,
D. E. V.
Andrade
,
A. T.
Franco
, and
C. O. R.
Negrão
, “
The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material
,”
J. Rheol.
61
,
893
903
(
2017
).
27.
Abedi
,
B.
,
E. C.
Rodrigues
, and
P. R.
de Souza Mendes
, “
Irreversible time dependence of gelled waxy crude oils: Flow experiments and modeling
,”
J. Rheol.
64
,
1237
1250
(
2020
).
28.
Wardhaugh
,
L. T.
, and
D. V.
Boger
, “
The measurement and description of the yielding behavior of waxy crude oil
,”
J. Rheol.
35
,
1121
1156
(
1991
).
29.
Chang
,
C.
,
D. V.
Boger
, and
Q. D.
Nguyen
, “
The yielding of waxy crude oils
,”
Ind. Eng. Chem. Res.
37
(
4
),
1551
1559
(
1998
).
30.
Paso
,
K.
,
T.
Kompalla
,
H. J.
Oschmann
, and
J.
Sjöblom
, “
Rheological degradation of model wax-oil gels
,”
J. Dispersion Sci. Technol.
30
,
472
480
(
2009
).
31.
Rønningsen
,
H. P.
, “
Rheological behaviour of gelled, waxy North Sea crude oils
,”
J. Pet. Sci. Eng.
7
,
177
213
(
1992
).
32.
Hou
,
L.
, “
Experimental study on yield behavior of Daqing crude oil
,”
Rheol. Acta
51
,
603
607
(
2012
).
33.
Tarcha
,
B. A.
,
B. P. P.
Forte
,
E. J.
Soares
, and
R. L.
Thompson
, “
Critical quantities on the yielding process of waxy crude oils
,”
Rheol. Acta
54
,
479
499
(
2015
).
34.
Zhao
,
Y.
,
L.
Kumar
,
K.
Paso
,
H.
Ali
,
J.
Safieva
, and
J.
Sjöblom
, “
Gelation and breakage behavior of model wax-oil systems: Rheological properties and model development
,”
Ind. Eng. Chem. Res.
51
,
8123
8133
(
2012
).
35.
Dimitriou
,
C. J.
,
G. H.
Mckinley
, and
R.
Venkatesan
, “
Rheo-PIV analysis of the yielding and flow of model waxy crude oils
,”
Energy Fuels
25
,
3040
3052
(
2011
).
36.
Kané
,
M.
,
M.
Djabourov
, and
J. L.
Volle
, “
Rheology and structure of waxy crude oils in quiescent and under shearing conditions
,”
Fuel
83
,
1591
1605
(
2004
).
37.
Magda
,
J. J.
,
H.
El-Gendy
,
K.
Oh
,
M. D.
Deo
,
A.
Montesi
, and
R.
Venkatesan
, “
Time-dependent rheology of a model waxy crude oil with relevance to gelled pipeline restart
,”
Energy Fuels
23
,
1311
1315
(
2009
).
38.
Kurniawan
,
M.
,
S.
Subramanian
,
J.
Norrman
, and
K.
Paso
, “
Influence of microcrystalline wax on the properties of model wax-oil gels
,”
Energy Fuels
32
(
5
),
5857
5867
(
2018
).
39.
Venkatesan
,
R.
,
N.
Nagarajan
,
K.
Paso
,
Y.-B.
Yi
,
A.
Sastry
, and
H.
Fogler
, “
The strength of paraffin gels formed under static and flow conditions
,”
Chem. Eng. Sci.
60
(
13
),
3587
3598
(
2005
).
40.
Lin
,
M.
,
C.
Li
,
F.
Yang
, and
Y.
Ma
, “
Isothermal structure development of Qinghai waxy crude oil after static and dynamic cooling
,”
J. Pet. Sci. Technol.
77
,
351
358
(
2011
).
41.
Chang
,
C.
,
D. V.
Boger
, and
Q. D.
Nguyen
, “
Influence of thermal history on the waxy structure of statically cooled waxy crude oil
,”
SPE J.
5
(
2
),
148
157
(
2000
).
42.
Zhao
,
Y.
,
L.
Kumar
,
K.
Paso
,
J.
Safieva
,
M. Z. B.
Sariman
, and
J.
Sjöblom
, “
Gelation behavior of model wax-oil and crude oil systems and yield stress model development
,”
Energy Fuels
26
,
6323
6331
(
2012
).
43.
Webber
,
R. M.
, “
Yield properties of wax crystal structures formed in lubricant mineral oils
,”
Ind. Eng. Chem. Fundam. Res.
40
(
1
),
195
203
(
2001
).
44.
Huang
,
J.
,
J.
Zhang
,
W.
Liu
,
Y.
Xie
,
Q.
Huang
, and
H.
Li
, “
Universal correlation to reconcile yielding characterizations of waxy oil gels
,”
Energy Fuels
35
(
5
),
3798
3807
(
2021
).
45.
Andrade
,
D. E. V.
,
M. A.
Marcelino Neto
, and
C. O. R.
Negrão
, “
Non-monotonic response of waxy oil gel strength to cooling rate
,”
Rheol. Acta
57
(
10
),
673
680
(
2018
).
46.
Fakroun
,
A.
, and
H.
Benkreira
, “
Rheology of waxy crude oils in relation to restart of gelled pipelines
,”
Chem. Eng. Sci.
211
,
115212
(
2020
).
47.
Van Der Geest
,
C.
,
V. C. B.
Guersoni
,
D.
Merino-Garcia
, and
A. C.
Bannwart
, “
Rheological study under simple shear of six gelled waxy crude oils
,”
J. Non-Newtonian Fluid Mech.
247
,
188
206
(
2017
).
48.
Sanyal
,
A.
,
S. B.
Shinde
, and
L.
Kumar
, “Synergetic effect of wall-slip and compressibility during startup flow of complex fluids,” preprint arXiv:2301.03898.
49.
Marinho
,
T. O.
,
F. H.
Marchesini
,
M. C. K.
de Oliveira
, and
M.
Nele
, “
Apparent wall slip effects on rheometric measurements of waxy gels
,”
J. Rheol.
65
,
257
272
(
2021
).
50.
Rodriguez-Fabia
,
S.
,
R.
Lopez Fyllingsnes
,
N.
Winter-Hjelm
,
J.
Norrman
, and
K. G.
Paso
, “
Influence of measuring geometry on rheomalaxis of macrocrystalline wax–oil gels: Alteration of breakage mechanism from adhesive to cohesive
,”
Energy Fuels
33
(
2
),
654
664
(
2019
).
51.
Abedi
,
B.
,
M. J. P.
Miguel
,
P. R.
De Souza Mendes
, and
R.
Mendes
, “
Startup flow of gelled waxy crude oils in pipelines: The role of volume shrinkage
,”
Fuel
288
,
119726
(
2021
).
52.
Japper-Jaafar
,
A.
,
P. T.
Bhaskoro
,
L. L.
Sean
,
M. Z.
Sariman
, and
H.
Nugroho
, “
Yield stress measurement of gelled waxy crude oil: Gap size requirement
,”
J. Non-Newtonian Fluid Mech.
218
,
71
82
(
2015
).
53.
Shinde
,
S. B.
, and
L.
Kumar
, “
New method for gelation temperature measurement without disturbing the crystal network
,”
Ind. Eng. Chem. Res.
60
(
23
),
8565
8578
(
2021
).
54.
Chala
,
G. T.
,
S. A.
Sulaiman
,
A.
Japper-Jaafar
,
M. M.
Mokhtar
, and
W. A. K.
Wan Abdullah
, “
Gas void formation in statically cooled waxy crude oil
,”
Int. J. Therm. Sci.
86
,
41
47
(
2014
).
55.
Chala
,
G. T.
,
S. A.
Sulaiman
,
A.
Japper-Jaafar
, and
W. A. K.
Wan Abdullah
, “
Effects of cooling regime on the formation of voids in statically cooled waxy crude oil
,”
Int. J. Multiphase Flow
77
,
187
195
(
2015
).
56.
Shafquet
,
A.
,
I.
Ismail
,
A.
Japper-Jaafar
,
S. A.
Sulaiman
, and
G. T.
Chala
, “
Estimation of gas void formation in statically cooled waxy crude oil using online capacitance measurement
,”
Int. J. Multiphase Flow
75
,
257
266
(
2015
).
57.
Li
,
H.
,
J.
Zhang
,
C.
Song
, and
G.
Sun
, “
The influence of the heating temperature on the yield stress and pour point of waxy crude oils
,”
J. Pet. Sci. Eng.
135
,
476
483
(
2015
).
58.
Andrade
,
D. E. V.
,
A. C. B.
da Cruz
,
A. T.
Franco
, and
C. O. R.
Negrão
, “
Influence of the initial cooling temperature on the gelation and yield stress of waxy crude oils
,”
Rheol. Acta
54
,
149
157
(
2015
).
59.
Paso
,
K.
,
T.
Kompalla
,
N.
Aske
, and
J. A.
Sjöblom
, “
Quartz crystal microbalance characterization of metal-oil interfaces and interactions with wax molecules
,”
J. Dispersion Sci. Technol.
29
,
775
782
(
2008
).
60.
Sun
,
G.
,
J.
Zhang
, and
H.
Li
, “
Structural behaviors of waxy crude oil emulsion gels
,”
Energy Fuel
28
,
3718
3729
(
2014
).
61.
Tikariha
,
L.
, and
L.
Kumar
, “
Pressure propagation and flow restart in the multi-plug gelled subsea pipeline
,”
J. Fluid Mech.
911
,
A46
(
2021
).
62.
Kumar
,
L.
,
O.
Skjæraasen
,
K.
Hald
,
K.
Paso
, and
J.
Sjöblom
, “
Nonlinear rheology and pressure wave propagation in a thixotropic elasto-viscoplastic fluids, in the context of flow restart
,”
J. Non-Newtonian Fluid Mech.
231
,
11
25
(
2016
).
63.
Nicolas
,
A.
,
E. E.
Ferrero
,
K.
Martens
, and
J. L.
Barrat
, “
Deformation and flow of amorphous solids: Insights from elastoplastic models
,”
Rev. Mod. Phys.
90
(
4
),
045006
(
2018
).
[64]
See supplementary material for macroscopic visualization in vertical and horizontal pipes. The vertical pipe has a dominant gravitation settling effect of microcrystal during gelation, resulting in smaller voids. We then presented an observation of voids in the rheometric setup and further showed possible contraction flow in the rheometric geometry.
You do not currently have access to this content.