We present a detailed analysis of the general influence of short branches on the structural, topological, and rheological behaviors of entangled short-chain branched (SCB) polyethylene (PE) melt systems under shear flow via direct comparison with the corresponding linear analogs using extensive atomistic nonequilibrium molecular dynamics (NEMD) simulations, for a wide range of flow strengths. In comparison with the linear melt, the SCB systems generally exhibit more compact chain structures and larger dynamic resistance, in response to an imposed flow field at all flow strengths. These features essentially arise from (i) the increased chain stiffness due to the torsional restriction of backbone atoms around the branch points and (ii) the fast random Brownian motion of short branches via their very short characteristic relaxation time. We analyzed various structural and rheological properties, such as anisotropic chain dimension and orientation and their detailed distributions, topological characteristics of the entanglement network, material functions, chain rotation dynamics, and flow birefringence. Distinctive physical characteristics of the entangled SCB systems exposed by these individual properties can be consistently understood based on the fundamental structural and dynamical roles of short branches. These findings are considered informative in our systematic understanding and prediction for the general rheological behaviors of long entangled SCB polymer systems under flow, and in tuning the material properties of SCB polymers in practical applications.

1.
Houbertz
,
R.
,
L.
Fröhlich
,
M.
Popall
,
U.
Streppel
,
P.
Dannberg
,
A.
Bräuer
,
J.
Serbin
, and
B. N.
Chichkov
, “
Inorganic-organic hybrid polymers for information technology: From planar technology to 3D nanostructures
,”
Adv. Eng. Mater.
5
,
551
555
(
2003
).
2.
Spalding
,
M. A.
, and
A. M.
Chatterjee
,
Handbook of Industrial Polyethylene and Technology
(
John Wiley & Sons
,
Hoboken
,
NJ
,
2017
).
3.
Guo
,
J.
,
Y.
Kim
,
Z. K.
Chong
,
A.
Alassali
,
J. P.
Chacon
,
D.
Gottschalk
,
M.
Kitzberger
, and
K.
Kuchta
, “
Quality changes of low-density polyethylene (LDPE) recyclates from the pretreatment process with a cationic surfactant and a nonionic surfactant as cleaning agents upstream of extrusion
,”
Processes
10
(
11
),
2174
(
2022
).
4.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
5.
Bird
,
R.
,
R.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Vol. 1: Fluid Mechanics
, 2nd ed. (
John Wiley and Sons Inc.
,
New York
,
1987
).
6.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
7.
McLeish
,
T. C. B.
, “
Tube theory of entangled polymer dynamics
,”
Adv. Phys.
51
,
1379
1527
(
2002
).
8.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
Oxford
,
2003
).
9.
Watanabe
,
H.
,
Y.
Matsumiya
,
E.
van Ruymbeke
,
D.
Vlassopoulos
, and
N.
Hadjichristidis
, “
Viscoelastic and dielectric relaxation of a Cayley-tree-type polyisoprene: Test of molecular picture of dynamic tube dilation
,”
Macromolecules
41
,
6110
6124
(
2008
).
10.
Kapnistos
,
M.
,
M.
Lang
,
D.
Vlassopoulos
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
D.
Cho
,
T.
Chang
, and
M.
Rubinstein
, “
Unexpected power-law stress relaxation of entangled ring polymers
,”
Nat. Mater.
7
,
997
1002
(
2008
).
11.
McLeish
,
T. C. B.
, and
R. G.
Larson
, “
Molecular constitutive equations for a class of branched polymers: The pom-pom polymer
,”
J. Rheol.
42
,
81
110
(
1998
).
12.
McLeish
,
T. C. B.
, and
S. T.
Milner
, “
Entangled dynamics and melt flow of branched polymers
,”
Adv. Polym. Sci.
143
,
195
256
(
1999
).
13.
McLeish
,
T.
, “
A tangled tale of topological fluids
,”
Phys. Today
61
(
8
),
40
45
(
2008
).
14.
Nafar Sefiddshti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Individual chain dynamics of a polyethylene melt undergoing steady shear flow
,”
J. Rheol.
59
,
119
153
(
2015
).
15.
Nafar Sefiddshti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Steady shearing flow of a moderately entangled polyethylene liquid
,”
J. Rheol.
60
,
1227
1244
(
2016
).
16.
Edwards
,
C. N.
,
M. H.
Nafar Sefiddashti
,
B. J.
Edwards
, and
B.
Khomami
, “
In-plane and out-of-plane rotational motion of individual chain molecules in steady shear flow of polymer melts and solutions
,”
J. Mol. Graphics Modell.
81
,
184
196
(
2018
).
17.
Nafar Sefiddshti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Individual molecular dynamics of an entangled polyethylene melt undergoing steady shear flow: Steady-state and transient dynamics
,”
Polymers
11
(
3
),
476
(
2019
).
18.
Moyassari
,
A.
,
T.
Gkourmpis
,
M. S.
Hedenqvist
, and
U. W.
Gedde
, “
Molecular dynamics simulations of short-chain branched bimodal polyethylene: Topological characteristics and mechanical behavior
,”
Macromolecules
52
,
807
818
(
2019
).
19.
Cho
,
S.
,
J. M.
Kim
, and
C.
Baig
, “
Scaling characteristics of rotational dynamics and rheology of linear polymer melts in shear flow
,”
Macromolecules
53
(
8
),
3030
3041
(
2020
).
20.
Edwards
,
B. J.
,
M. H.
Nafar Sefiddashti
, and
B.
Khomami
, “
A method for calculating the nonequilibrium entropy of a flowing polymer melt via atomistic simulation
,”
J. Chem. Phys.
155
,
111101
(
2021
).
21.
Edwards
,
B. J.
,
M.
Hadi Nafar Sefiddashti
, and
B.
Khomami
, “
Atomistic simulation of shear flow of linear alkane and polyethylene liquids: A 50-year retrospective
,”
J. Rheol.
66
,
415
489
(
2022
).
22.
Fall
,
W. S.
,
J.
Baschnagel
,
O.
Lhost
, and
H.
Meyer
, “
Role of short chain branching in crystalline model polyethylenes
,”
Macromolecules
55
,
8438
8450
(
2022
).
23.
Kapnistos
,
M.
,
K. M.
Kirkwood
,
J.
Ramirez
,
D.
Vlassopoulos
, and
L. G.
Leal
, “
Nonlinear rheology of model comb polymers
,”
J. Rheol.
53
,
1133
1153
(
2009
).
24.
Snijkers
,
F.
,
D.
Vlassopoulos
,
G.
Ianniruberto
,
G.
Marrucci
,
H.
Lee
,
J.
Yang
, and
T.
Chang
, “
Double stress overshoot in start-up of simple shear flow of entangled comb polymers
,”
ACS Macro Lett.
2
,
601
604
(
2013
).
25.
Yan
,
Z.-C.
, and
D.
Vlassopoulos
, “
Chain dimensions and dynamic dilution in branched polymers
,”
Polymer
96
,
35
44
(
2016
).
26.
Wagner
,
M. H.
,
H.
Bastian
,
P.
Hachmann
,
J.
Meissner
,
S.
Kurzbeck
,
H.
Münstedt
, and
F.
Langouche
, “
The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows
,”
Rheol. Acta
39
,
97
109
(
2000
).
27.
Wood-Adams
,
P. M.
, “
The effect of long chain branches on the shear flow behavior of polyethylene
,”
J. Rheol.
45
,
203
210
(
2001
).
28.
Kim
,
J. M.
, and
C.
Baig
, “
Communication: Role of short chain branching in polymer structure and dynamics
,”
J. Chem. Phys.
144
,
081101
(
2016
).
29.
Roh
,
E. J.
,
J. M.
Kim
, and
C.
Baig
, “
Molecular dynamics study on the structure and relaxation of short-chain branched ring polymer melts
,”
Polymer
175
,
107
117
(
2019
).
30.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Carl Hanser Verlag
,
Munich
,
2006
).
31.
Tukur
,
N. M.
,
B. F.
Abu Sharkh
,
E. Y.
Osei-Ywum
, and
I. A.
Hussein
, “
Impact of short chain branching on conformations of metallocene LLDPE melts: NMR, light scattering and MD simulation study
,”
Macromol. Symp.
263
,
121
129
(
2008
).
32.
Gabriel
,
C.
, and
H.
Münstedt
, “
Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear
,”
Rheol. Acta
41
,
232
244
(
2002
).
33.
Gupta
,
P.
,
G. L.
Wilkes
,
A. M.
Sukhadia
,
R. K.
Krishnaswamy
,
M. J.
Lamborn
,
S. M.
Wharry
,
C. C.
Tso
,
P. J.
DesLauriers
,
T.
Mansfield
, and
F. L.
Beyer
, “
Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? An investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst
,”
Polymer
46
,
8819
8837
(
2005
).
34.
Ramachandran
,
R.
,
G.
Beaucage
,
A. S.
Kulkarni
,
D.
McFaddin
,
J.
Merrick-Mack
, and
V.
Galiatsatos
, “
Persistence length of short-chain branched polyethylene
,”
Macromolecules
41
,
9802
9806
(
2008
).
35.
Stadler
,
F. J.
, and
H.
Münstedt
, “
Terminal viscous and elastic properties of linear ethane/α-olefin copolymers
,”
J. Rheol.
52
,
697
712
(
2008
).
36.
Constantin
,
D.
, “
Linear-low-density polyethylene melt rheology: Extensibility and extrusion defects
,”
Polym. Eng. Sci.
24
,
268
274
(
1984
).
37.
Bach
,
A.
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
,
429
441
(
2003
).
38.
Kirkwood
,
K. M.
,
L. G.
Leal
,
D.
Vlassopoulos
,
P.
Driva
, and
N.
Hadjichristidis
, “
Stress relaxation of comb polymers with short branches
,”
Macromolecules
42
,
9592
9608
(
2009
).
39.
Lentzakis
,
H.
,
D.
Vlassopoulos
,
D. J.
Read
,
H.
Lee
,
T.
Chang
,
P.
Driva
, and
N.
Hadjichristidis
, “
Uniaxial extensional rheology of well-characterized comb polymers
,”
J. Rheol.
57
,
605
625
(
2013
).
40.
Snijkers
,
F.
,
D.
Vlassopoulos
,
H.
Lee
,
J.
Yang
,
T.
Chang
,
P.
Driva
, and
N.
Hadjichristidis
, “
Start-up and relaxation of well-characterized comb polymers in simple shear
,”
J. Rheol.
57
,
1079
1100
(
2013
).
41.
Jeong
,
S. H.
,
J. M.
Kim
, and
C.
Baig
, “
Rheological behaviors of H-shaped polymers incorporated with short branches under shear and elongational flows via FENE-Rouse model
,”
J. Rheol.
62
,
1115
1124
(
2018
).
42.
Starck
,
P.
,
A.
Malmberg
, and
B.
Löfgren
, “
Thermal and rheological studies on the molecular composition and structure of metallocene- and Ziegler-Natta-catalyzed ethylene-α-olefin copolymers
,”
J. Appl. Polym. Sci.
83
,
1140
1156
(
2002
).
43.
Gracía-Franco
,
C. A.
,
B. A.
Harrington
, and
D. J.
Lohse
, “
Effect of short-chain branching on the rheology of polyolefins
,”
Macromolecules
39
,
2710
2717
(
2006
).
44.
Jeong
,
S. H.
,
J. M.
Kim
, and
C.
Baig
, “
Rheological influence of short-chain branching for polymeric materials under shear with variable branch density and branching architecture
,”
Macromolecules
50
,
4491
4500
(
2017
).
45.
Kröger
,
M.
, “
Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems
,”
Comput. Phys. Commun.
168
,
209
232
(
2005
).
46.
Jeong
,
S. H.
,
J. M.
Kim
,
J.
Yoon
,
C.
Tzoumanekas
,
M.
Kröger
, and
C.
Baig
, “
Influence of molecular architecture on the entanglement network: Topological analysis of linear, long- and short-chain branched polyethylene melts via Monte Carlo simulations
,”
Soft Matter
12
,
3770
3786
(
2016
).
47.
Lees
,
A. W.
, and
S. F.
Edwards
, “
The computer study of transport processes under extreme conditions
,”
J. Phys. C: Solid State Phys.
5
,
1921
1928
(
1972
).
48.
Nosé
,
S.
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
49.
Hoover
,
W. G.
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
50.
Baig
,
C.
,
B. J.
Edwards
,
D. J.
Keffer
, and
H. D.
Cochran
, “
A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow
,”
J. Chem. Phys.
122
,
114103
(
2005
).
51.
Siepmann
,
J. I.
,
S.
Karaboni
, and
B.
Smit
, “
Simulating the critical properties of complex fluids
,”
Nature
365
,
330
332
(
1993
).
52.
Martin
,
M. G.
, and
J. I.
Siepmann
, “
Transferable potential for phase equilibria. 1: United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
(
14
),
2569
2577
(
1998
).
53.
Martin
,
M. G.
, and
J. I.
Siepmann
, “
Novel configurational-bias Monte Carlo method for branched molecules: Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes
,”
J. Phys. Chem. B
103
(
21
),
4508
4517
(
1999
).
54.
Tuckerman
,
M.
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
2001
(
1992
).
55.
Tsolou
,
G.
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
, “
Detailed atomistic molecular dynamics simulation of cis-1,4-poly(butadiene)
,”
Macromolecules
38
,
1478
1492
(
2005
).
56.
Baig
,
C.
,
V. G.
Mavrantzas
, and
M.
Kröger
, “
Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear
,”
Macromolecules
43
,
6886
6902
(
2010
).
57.
Morrison
,
F.
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
).
58.
Schroeder
,
C. M.
,
R. E.
Teixeira
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Dynamics of DNA in the flow-gradient plane of steady shear flow: Observations and simulations
,”
Macromolecules
38
(
5
),
1967
1978
(
2005
).
59.
Yoon
,
J.
,
J.
Kim
, and
C.
Baig
, “
Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogs
,”
J. Rheol.
60
,
673
685
(
2016
).
60.
Roh
,
E. J.
, and
C.
Baig
, “
Nonequilibrium Monte Carlo simulations of entangled polymer melts under steady shear flow
,”
Soft Matter
15
,
5271
5281
(
2019
).
61.
Nikiforidis
,
V.-M.
,
D. G.
Tsalikis
, and
P. S.
Stephanou
, “
On the use of a non-constant non-affine or slip parameter in polymer rheology constitutive modeling
,”
Dynamics
2
,
380
398
(
2022
).
62.
Ramos
,
J.
,
L. D.
Peristeras
, and
D. N.
Theodorou
, “
Monte Carlo simulation of short chain branched polyolefins in the molten state
,”
Macromolecules
40
,
9640
9650
(
2007
).
63.
Lohse
,
D. J.
, “
The influence of chemical structure on polyolefin melt rheology and miscibility
,”
J. Macromol. Sci., Part C: Polym. Rev.
45
,
289
308
(
2005
).
64.
Edwards
,
S. F.
, “
The theory of rubber elasticity
,”
Br. Polym. J.
9
,
140
143
(
1977
).
65.
Fetters
,
L. J.
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
,
4639
4647
(
1994
).
66.
Irving
,
J. H.
, and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
67.
Baig
,
C.
, and
V. G.
Mavrantzas
, “
Tension thickening, molecular shape, and flow birefringence of an H-shaped polymer melt in steady shear and planar extension
,”
J. Chem. Phys.
132
,
014904
(
2010
).
68.
Jeong
,
S. H.
,
S.
Cho
, and
C.
Baig
, “
Chain rotational dynamics in dilute polymer solutions and melts under shear flow
,”
Polymer
281
,
126101
(
2023
).
69.
Aust
,
C.
,
S.
Hess
, and
M.
Kröger
, “
Rotation and deformation of a finitely extendable flexible polymer molecule in a steady shear flow
,”
Macromolecules
35
,
8621
8630
(
2002
).
70.
Kim
,
J. M.
, and
C.
Baig
, “
Precise analysis of polymer rotational dynamics
,”
Sci. Rep.
6
,
19127
(
2016
).
71.
Jeong
,
S.
,
J. M.
Kim
, and
C.
Baig
, “
Molecular characteristics of stress overshoot for polymer melts under start-up shear flow
,”
J. Chem. Phys.
147
,
234901
(
2017
).
72.
Lee
,
K.
,
M. R.
Mackley
,
T. C. B.
McLeish
,
T. M.
Micholson
, and
O. G.
Harlen
, “
Experimental observation and numerical simulation of transient “stress fangs” within flowing molten polyethylene
,”
J. Rheol.
45
,
1261
1277
(
2001
).
73.
Janeschitz-Kriegl
,
H.
,
Polymer Melt Rheology and Flow Birefringence
(
Springer
,
Berlin
,
1983
).
74.
Baig
,
C.
,
B. J.
Edwards
, and
D. J.
Keffer
, “
A molecular dynamics study of the stress-optical behavior of a linear short-chain polyethylene melt under shear
,”
Rheol. Acta
46
,
1171
1186
(
2007
).
75.
To be consistent, the birefringence tensor was calculated at the same SKS UA level as applied in NEMD simulations without considering actual C−H bonds. Still, we believe that the main characteristics of the flow birefringence under shear flow can be properly described based on the anisotropic alignment of the carbon UA.
76.
See supplementary material online for simulation method, packing length information (supplementary note 1), and Supplementary Figs. S1–S7.

Supplementary Material

You do not currently have access to this content.