Coalescence event in pendant and sessile droplets is distinguished by the formation and evolution of the liquid bridge created upon singular contact. For Newtonian droplets, the bridge radius, R, is known to evolve as R t b, with universal values of the power-law exponent, b, signifying the dominant governing forces. However, recent works on different subclasses of rheologically complex fluids comprising of macromolecules have highlighted the effects of additional forces on coalescence. In this work, we experimentally explore the phenomenon in distinct subclasses of rheologically complex fluids, namely, colloidal and noncolloidal suspensions, that have particle hydrodynamic interactions as the origin of viscoelasticity. Our observations suggest that such fluids have flow-dependent thinning responses with finite elasticity in shear rheology but negligible elasticity in extensional rheology. Based on these, the study extends the Newtonian universality of b = 0.5 to these thinning fluids. Further, we fortify these observations through a theoretical model developed by employing Ostwald–de Waele’s constitutive law. Finally, we utilize this theoretical model to inspect the existence of arrested coalescence in generalized Newtonian fluids.

1.
Frenkel
,
J.
, “
Viscous flow of crystalline bodies under the action of surface tension
,”
J. Phys.
9
,
385
391
(
1945
).
2.
Eggers
,
J.
,
J. R.
Lister
, and
H. A.
Stone
, “
Coalescence of liquid drops
,”
J. Fluid Mech.
401
,
293
310
(
1999
).
3.
Villermaux
,
E.
, and
B.
Bossa
, “
Single-drop fragmentation determines size distribution of raindrops
,”
Nat. Phys.
5
,
697
702
(
2009
).
4.
Pruppacher
,
H. R.
, and
J. D.
Klett
, “Microstructure of atmospheric clouds and precipitation,” in Microphysics of Clouds and Precipitation (Springer, New York, 2010), pp. 10–73.
5.
Ambrose
,
J.
,
M.
Livitz
,
D.
Wessels
,
S.
Kuhl
,
D. F.
Lusche
,
A.
Scherer
,
E.
Voss
, and
D. R.
Soll
, “
Mediated coalescence: A possible mechanism for tumor cellular heterogeneity
,”
Am. J. Cancer Res.
5
,
3485
3504
(
2015
).
6.
Orme
,
M.
, “
Experiments on droplet collisions, bounce, coalescence and disruption
,”
Prog. Energy Combust. Sci.
23
,
65
79
(
1997
).
7.
Ashgriz
,
N.
, and
J.
Poo
, “
Coalescence and separation in binary collisions of liquid drops
,”
J. Fluid Mech.
221
,
183
204
(
1990
).
8.
Djohari
,
H.
,
J. I.
Martínez-Herrera
, and
J. J.
Derby
, “
Transport mechanisms and densification during sintering: I. Viscous flow versus vacancy diffusion
,”
Chem. Eng. Sci.
64
,
3799
3809
(
2009
).
9.
Hopper
,
R. W.
, “
Coalescence of two equal cylinders: Exact results for creeping viscous plane flow driven by capillarity
,”
J. Am. Ceram. Soc.
67
,
C-262
C-264
(
1984
).
10.
Hopper
,
R. W.
, “
Plane stokes flow driven by capillarity on a free surface
,”
J. Fluid Mech.
213
,
349
375
(
1990
).
11.
Hopper
,
R. W.
, “
Stokes flow of a cylinder and half-space driven by capillarity
,”
J. Fluid Mech.
243
,
171
181
(
1992
).
12.
Aarts
,
D. G.
,
H. N.
Lekkerkerker
,
H.
Guo
,
G. H.
Wegdam
, and
D.
Bonn
, “
Hydrodynamics of droplet coalescence
,”
Phys. Rev. Lett.
95
,
164503
(
2005
).
13.
Thoroddsen
,
S.
,
K.
Takehara
, and
T.
Etoh
, “
The coalescence speed of a pendant and a sessile drop
,”
J. Fluid Mech.
527
,
85
114
(
2005
).
14.
Fezzaa
,
K.
, and
Y.
Wang
, “
Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets
,”
Phys. Rev. Lett.
100
,
104501
(
2008
).
15.
Wu
,
M.
,
T.
Cubaud
, and
C.-M.
Ho
, “
Scaling law in liquid drop coalescence driven by surface tension
,”
Phys. Fluids
16
,
L51
L54
(
2004
).
16.
Burton
,
J.
, and
P.
Taborek
, “
Role of dimensionality and axisymmetry in fluid pinch-off and coalescence
,”
Phys. Rev. Lett.
98
,
224502
(
2007
).
17.
Duchemin
,
L.
,
J.
Eggers
, and
C.
Josserand
, “
Inviscid coalescence of drops
,”
J. Fluid Mech.
487
,
167
178
(
2003
).
18.
Sprittles
,
J.
, and
Y.
Shikhmurzaev
, “
Coalescence of liquid drops: Different models versus experiment
,”
Phys. Fluids
24
,
122105
(
2012
).
19.
Eiswirth
,
R.
,
H.-J.
Bart
,
A.
Ganguli
, and
E.
Kenig
, “
Experimental and numerical investigation of binary coalescence: Liquid bridge building and internal flow fields
,”
Phys. Fluids
24
,
062108
(
2012
).
20.
Pothier
,
J.-C.
, and
L. J.
Lewis
, “
Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence
,”
Phys. Rev. B
85
,
115447
(
2012
).
21.
Gross
,
M.
,
I.
Steinbach
,
D.
Raabe
, and
F.
Varnik
, “
Viscous coalescence of droplets: A lattice Boltzmann study
,”
Phys. Fluids
25
,
052101
(
2013
).
22.
Sprittles
,
J. E.
, and
Y. D.
Shikhmurzaev
, “
A parametric study of the coalescence of liquid drops in a viscous gas
,”
J. Fluid Mech.
753
,
279
306
(
2014
).
23.
Paulsen
,
J. D.
,
J. C.
Burton
, and
S. R.
Nagel
, “
Viscous to inertial crossover in liquid drop coalescence
,”
Phys. Rev. Lett.
106
,
114501
(
2011
).
24.
Yao
,
W.
,
H.
Maris
,
P.
Pennington
, and
G.
Seidel
, “
Coalescence of viscous liquid drops
,”
Phys. Rev. E
71
,
016309
(
2005
).
25.
Paulsen
,
J. D.
,
J. C.
Burton
,
S. R.
Nagel
,
S.
Appathurai
,
M. T.
Harris
, and
O. A.
Basaran
, “
The inexorable resistance of inertia determines the initial regime of drop coalescence
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
6857
6861
(
2012
).
26.
Anthony
,
C. R.
,
M. T.
Harris
, and
O. A.
Basaran
, “
Initial regime of drop coalescence
,”
Phys. Rev. Fluids
5
,
033608
(
2020
).
27.
Doi
,
M.
,
Soft Matter Physics
(
Oxford University
,
New York
,
2013
).
28.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
, 2nd ed. (
Wiley
,
New York
,
1987
).
29.
Varma
,
S. C.
,
A.
Saha
,
S.
Mukherjee
,
A.
Bandopadhyay
,
A.
Kumar
, and
S.
Chakraborty
, “
Universality in coalescence of polymeric fluids
,”
Soft Matter
16
,
10921
10927
(
2020
).
30.
Varma
,
S. C.
,
A.
Saha
, and
A.
Kumar
, “
Coalescence of polymeric sessile drops on a partially wettable substrate
,”
Phys. Fluids
33
,
123101
(
2021
).
31.
Varma
,
S. C.
,
A. S.
Rajput
, and
A.
Kumar
, “
Rheocoalescence: Relaxation time through coalescence of droplets
,”
Macromolecules
55
,
6031
6039
(
2022
).
32.
Varma
,
S. C.
,
D.
Dasgupta
, and
A.
Kumar
, “
Elasticity can affect droplet coalescence
,”
Phys. Fluids
34
,
093112
(
2022
).
33.
Rajput
,
A. S.
,
S. C.
Varma
, and
A.
Kumar
, “Sub-Newtonian coalescence in polymeric fluids,” arXiv:2208.09718 (2022).
34.
Case
,
S. C.
, and
S. R.
Nagel
, “
Coalescence in low-viscosity liquids
,”
Phys. Rev. Lett.
100
,
084503
(
2008
).
35.
Chen
,
S.
,
E.
Pirhadi
, and
X.
Yong
, “
Viscoelastic necking dynamics between attractive microgels
,”
J. Colloid Interface Sci.
618
,
283
289
(
2022
).
36.
Ness
,
C.
,
R.
Seto
, and
R.
Mari
, “
The physics of dense suspensions
,”
Annu. Rev. Condens. Matter Phys.
13
,
97
117
(
2022
).
37.
Rubinstein
,
M.
, and
R. H.
Colby
,
Polymer Physics
(
Oxford University
,
New York
,
2003
).
38.
Tanner
,
R. I.
, “
Computation and experiment in non-colloidal suspension rheology
,”
J. Non-Newtonian Fluid Mech.
281
,
104282
(
2020
).
39.
Shikata
,
T.
, and
D. S.
Pearson
, “
Viscoelastic behavior of concentrated spherical suspensions
,”
J. Rheol.
38
,
601
616
(
1994
).
40.
Shaw
,
R. A.
, “
Particle-turbulence interactions in atmospheric clouds
,”
Annu. Rev. Fluid Mech.
35
,
183
227
(
2003
).
41.
Dinic
,
J.
,
M.
Biagioli
, and
V.
Sharma
, “
Pinch-off dynamics and extensional relaxation times of intrinsically semi-dilute polymer solutions characterized by dripping-onto-substrate rheometry
,”
J. Polym. Sci., Part B: Polym. Phys.
55
,
1692
1704
(
2017
).
42.
Marsh
,
B.
, and
J.
Pearson
, “
The measurement of normal-stress differences using a cone-and-plate total thrust apparatus
,”
Rheol. Acta
7
,
326
331
(
1968
).
43.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “
Experimental challenges of shear rheology: How to avoid bad data
,”
Complex Fluids Biol. Syst.: Exp. Theory Comput.
2015
,
207
241
(
2015
).
44.
Ferreira
,
A. G.
,
A. P.
Egas
,
I. M.
Fonseca
,
A. C.
Costa
,
D. C.
Abreu
, and
L. Q.
Lobo
, “
The viscosity of glycerol
,”
J. Chem. Thermodyn.
113
,
162
182
(
2017
).
45.
Kawaguchi
,
M.
, “
Dispersion stability and rheological properties of silica suspensions in aqueous solutions
,”
Adv. Colloid Interface Sci.
284
,
102248
(
2020
).
46.
Suman
,
K.
, and
Y. M.
Joshi
, “
On the universality of the scaling relations during sol-gel transition
,”
J. Rheol.
64
,
863
877
(
2020
).
47.
Gadala-Maria
,
F.
, and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
,
799
814
(
1980
).
48.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
49.
Chan
,
D.
, and
R.
Powell
, “
Rheology of suspensions of spherical particles in a Newtonian and a non-Newtonian fluid
,”
J. Non-Newtonian Fluid Mech.
15
,
165
179
(
1984
).
50.
Aral
,
B. K.
, and
D. M.
Kalyon
, “
Viscoelastic material functions of noncolloidal suspensions with spherical particles
,”
J. Rheol.
41
,
599
620
(
1997
).
51.
Israelachvili
,
J. N.
,
Intermolecular and Surface Forces
(
Academic
,
New York
,
2011
).
52.
Kern
,
V. R.
,
T.
Sæter
, and
A.
Carlson
, “
Viscoplastic sessile drop coalescence
,”
Phys. Rev. Fluids
7
,
L081601
(
2022
).
53.
Stickel
,
J. J.
, and
R. L.
Powell
, “
Fluid mechanics and rheology of dense suspensions
,”
Annu. Rev. Fluid Mech.
37
,
129
149
(
2005
).
54.
Foss
,
D. R.
, and
J. F.
Brady
, “
Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,”
J. Fluid Mech.
407
,
167
200
(
2000
).
55.
Ramachandran
,
A.
, “
Secondary convection due to second normal stress differences: A new mechanism for the mass transport of solutes in pressure-driven flows of concentrated, non-colloidal suspensions
,”
Soft Matter
9
,
6824
6840
(
2013
).
56.
Calabrese
,
V.
,
A. Q.
Shen
, and
S. J.
Haward
, “How do polymers stretch in capillary-driven extensional flows?,” arXiv:2403.04103 (2024).
57.
Colby
,
R. H.
, “
Fiber spinning from polymer solutions
,”
J. Rheol.
67
,
1251
1255
(
2023
).
58.
Konijn
,
B.
,
O.
Sanderink
, and
N. P.
Kruyt
, “
Experimental study of the viscosity of suspensions: Effect of solid fraction, particle size and suspending liquid
,”
Powder Technol.
266
,
61
69
(
2014
).
59.
Xia
,
X.
,
C.
He
, and
P.
Zhang
, “
Universality in the viscous-to-inertial coalescence of liquid droplets
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
23467
23472
(
2019
).
60.
Pawar
,
A. B.
,
M.
Caggioni
,
R.
Ergun
,
R. W.
Hartel
, and
P. T.
Spicer
, “
Arrested coalescence in pickering emulsions
,”
Soft Matter
7
,
7710
7716
(
2011
).
61.
See the supplementary material online for details on intermediate steps in derivations, dimensionless numbers, and rheological characterizations.

Supplementary Material

You do not currently have access to this content.