Microgels are confined to fluid interfaces in numerous applications, yet many aspects of the microgel-covered interface remain unclear. In this work, we use interfacial shear and dilatational rheology to study the effects of electrostatics on the mechanical characteristics of polyelectrolyte microgel monolayers at oil-water interfaces as a function of the microgel interfacial concentration. We find a clear correlation between the influence of charges on the mechanical properties of the monolayers and the influence of charges on their two-dimensional phase behavior. At lower microgel interfacial concentrations, the moduli of uncharged monolayers are larger than those of charged monolayers. Consistent with our previous findings on the phase behavior, here, the mechanical response of the interfacial layer is controlled by in-plane interactions of the microgels within the interface. At higher microgel interfacial concentrations, the moduli of charged monolayers are larger than those of uncharged monolayers. The mechanical response becomes dominated by out-of-plane interactions between the fractions of the adsorbed microgels further from the interface. Evidently, electrostatic interactions do not contribute directly to the mechanical response of the interfacial layer, that is, through charge repulsion, but indirectly through the difference in the swelling properties of uncharged and charged microgels. These results advance our understanding of how the charge-dependent microstructure of the interfacial layer affects its mechanical properties, which is not only important from a fundamental point of view but is also relevant to applications where polyelectrolyte microgels are used as responsive emulsion stabilizers.

1.
Brijitta
,
J.
, and
P.
Schurtenberger
, “
Responsive hydrogel colloids: Structure, interactions, phase behaviour, and equilibrium and non-equilibrium transitions of microgel dispersions
,”
Curr. Opin. Colloid Interface Sci.
40
,
87
103
(
2019
).
2.
Karg
,
M.
,
A.
Pich
,
T.
Hellweg
,
T.
Hoare
,
L. A.
Lyon
,
J. J.
Crassous
,
D.
Suzuki
,
R. A.
Gumerov
,
S.
Schneider
,
I. I.
Potemkin
, and
W.
Richtering
, “
Nanogels and microgels: From model colloids to applications, recent developments, and future trends
,”
Langmuir
35
,
6231
6255
(
2019
).
3.
Pelton
,
R.
, “
Temperature-sensitive aqueous microgels
,”
Adv. Colloid Interface Sci.
85
,
1
33
(
2000
).
4.
Stieger
,
M.
,
J. S.
Pedersen
,
P.
Lindner
, and
W.
Richtering
, “
Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study
,”
Langmuir
20
,
7283
7292
(
2004
).
5.
Zhou
,
S.
, and
B.
Chu
, “
Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water
,”
J. Phys. Chem. B
102
,
1364
1371
(
1998
).
6.
Debord
,
J. D.
, and
L. A.
Lyon
, “
Synthesis and characterization of ph-responsive copolymer microgels with tunable volume phase transition temperatures
,”
Langmuir
19
,
7662
7664
(
2003
).
7.
Hoare
,
T.
, and
R.
Pelton
, “
Highly pH and temperature responsive microgels functionalized with vinylacetic acid
,”
Macromolecules
37
,
2544
2550
(
2004
).
8.
Kojima
,
H.
,
F.
Tanaka
,
C.
Scherzinger
, and
W.
Richtering
, “
Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents
,”
J. Polym. Sci., Part B: Polym. Phys.
51
,
1100
1111
(
2013
).
9.
Maccarrone
,
S.
,
C.
Scherzinger
,
O.
Holderer
,
P.
Lindner
,
M.
Sharp
,
W.
Richtering
, and
D.
Richter
, “
Cononsolvency effects on the structure and dynamics of microgels
,”
Macromolecules
47
,
5982
5988
(
2014
).
10.
Fernández-Nieves
,
A.
,
A.
Fernández-Barbero
,
B.
Vincent
, and
F. J.
de las Nieves
, “
Charge controlled swelling of microgel particles
,”
Macromolecules
33
,
2114
2118
(
2000
).
11.
Schroeder
,
R.
,
A. A.
Rudov
,
L. A.
Lyon
,
W.
Richtering
,
A.
Pich
, and
I. I.
Potemkin
, “
Electrostatic interactions and osmotic pressure of counterions control the ph-dependent swelling and collapse of polyampholyte microgels with random distribution of ionizable groups
,”
Macromolecules
48
,
5914
5927
(
2015
).
12.
Fernández-Barbero
,
A.
,
A.
Fernández-Nieves
,
I.
Grillo
, and
E.
López-Cabarcos
, “
Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering
,”
Phys. Rev. E
66
,
051803
(
2002
).
13.
Stieger
,
M.
,
W.
Richtering
,
J. S.
Pedersen
, and
P.
Lindner
, “
Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids
,”
J. Chem. Phys.
120
,
6197
6206
(
2004
).
14.
Bergmann
,
S.
,
O.
Wrede
,
T.
Huser
, and
T.
Hellweg
, “
Super-resolution optical microscopy resolves network morphology of smart colloidal microgels
,”
Phys. Chem. Chem. Phys.
20
,
5074
5083
(
2018
).
15.
Wu
,
X.
,
R. H.
Pelton
,
A. E.
Hamielec
,
D. R.
Woods
, and
W.
McPhee
, “
The kinetics of poly(N-isopropylacrylamide) microgel latex formation
,”
Colloid Polym. Sci.
272
,
467
477
(
1994
).
16.
Kröger
,
L. C.
,
W. A.
Kopp
, and
K.
Leonhard
, “
Prediction of chain propagation rate constants of polymerization reactions in aqueous NIPAM/BIS and VCL/BIS systems
,”
J. Phys. Chem. B
121
,
2887
2895
(
2017
).
17.
Zhang
,
J.
, and
R.
Pelton
, “
Poly(N-isopropylacrylamide) microgels at the air-water interface
,”
Langmuir
15
,
8032
8036
(
1999
).
18.
Li
,
Z.
,
K.
Geisel
,
W.
Richtering
, and
T.
Ngai
, “
Poly(N-isopropylacrylamide) microgels at the oil-water interface: Adsorption kinetics
,”
Soft Matter
9
,
9939
9946
(
2013
).
19.
Li
,
Z.
,
W.
Richtering
, and
T.
Ngai
, “
Poly(N-isopropylacrylamide) microgels at the oil-water interface: Temperature effect
,”
Soft Matter
10
,
6182
6191
(
2014
).
20.
Tatry
,
M. C.
,
E.
Laurichesse
,
A.
Perro
,
V.
Ravaine
, and
V.
Schmitt
, “
Kinetics of spontaneous microgels adsorption and stabilization of emulsions produced using microfluidics
,”
J. Colloid Interface Sci.
548
,
1
11
(
2019
).
21.
Monteillet
,
H.
,
M.
Workamp
,
J.
Appel
,
J. M.
Kleijn
,
F. A. M.
Leermakers
, and
J.
Sprakel
, “
Ultrastrong anchoring yet barrier-free adsorption of composite microgels at liquid interfaces
,”
Adv. Mater. Interfaces
1
,
1300121
(
2014
).
22.
Ngai
,
T.
,
S. H.
Behrens
, and
H.
Auweter
, “
Novel emulsions stabilized by pH and temperature sensitive microgels
,”
Chem. Commun.
21
,
331
333
(
2005
).
23.
Ngai
,
T.
,
H.
Auweter
, and
S. H.
Behrens
, “
Environmental responsiveness of microgel particles and particle-stabilized emulsions
,”
Macromolecules
39
,
8171
8177
(
2006
).
24.
Brugger
,
B.
,
B. A.
Rosen
, and
W.
Richtering
, “
Microgels as stimuli-responsive stabilizers for emulsions
,”
Langmuir
24
,
12202
12208
(
2008
).
25.
Wiese
,
S.
,
Y.
Tsvetkova
,
N. J. E.
Daleiden
,
A. C.
Spieß
, and
W.
Richtering
, “
Microgel stabilized emulsions: Breaking on demand
,”
Colloids Surf., A
495
,
193
199
(
2016
).
26.
Horiguchi
,
Y.
,
H.
Kawakita
,
K.
Ohto
, and
S.
Morisada
, “
Temperature-responsive Pickering foams stabilized by poly(N-isopropylacrylamide) nanogels
,”
Adv. Powder Technol.
29
,
266
272
(
2018
).
27.
Maestro
,
A.
,
D.
Jones
,
C.
Sánchez de Rojas Candela
,
E.
Guzman
,
M. H. G.
Duits
, and
P.
Cicuta
, “
Tuning interfacial properties and processes by controlling the rheology and structure of poly(N-isopropylacrylamide) particles at air/water interfaces
,”
Langmuir
34
,
7067
7076
(
2018
).
28.
Petrunin
,
A. V.
,
S.
Bochenek
,
W.
Richtering
, and
A.
Scotti
, “
Harnessing the polymer-particle duality of ultra-soft nanogels to stabilise smart emulsions
,”
Phys. Chem. Chem. Phys.
25
,
2810
2820
(
2023
).
29.
Destribats
,
M.
,
V.
Lapeyre
,
M.
Wolfs
,
E.
Sellier
,
F.
Leal-Calderon
,
V.
Ravaine
, and
V.
Schmitt
, “
Soft microgels as Pickering emulsion stabilizers: Role of particle deformability
,”
Soft Matter
7
,
7689
7698
(
2011
).
30.
Geisel
,
K.
,
L.
Isa
, and
W.
Richtering
, “
Unraveling the 3D localization and deformation of responsive microgels at oil/water interfaces: A step forward in understanding soft emulsion stabilizers
,”
Langmuir
28
,
15770
15776
(
2012
).
31.
Minato
,
H.
,
M.
Murai
,
T.
Watanabe
,
S.
Matsui
,
M.
Takizawa
,
T.
Kureha
, and
D.
Suzuki
, “
The deformation of hydrogel microspheres at the air/water interface
,”
Chem. Commun.
54
,
932
935
(
2018
).
32.
Chevalier
,
Y.
, and
M.-A.
Bolzinger
, “
Emulsions stabilized with solid nanoparticles: Pickering emulsions
,”
Colloids Surf., A
439
,
23
34
(
2013
).
33.
Style
,
R. W.
,
L.
Isa
, and
E. R.
Dufresne
, “
Adsorption of soft particles at fluid interfaces
,”
Soft Matter
11
,
7412
7419
(
2015
).
34.
Mehrabian
,
H.
,
J.
Harting
, and
J. H.
Snoeijer
, “
Soft particles at a fluid interface
,”
Soft Matter
12
,
1062
1073
(
2016
).
35.
Rumyantsev
,
A. M.
,
R. A.
Gumerov
, and
I. I.
Potemkin
, “
A polymer microgel at a liquid-liquid interface: Theory versus computer simulations
,”
Soft Matter
12
,
6799
6811
(
2016
).
36.
Zielińska
,
K.
,
H.
Sun
,
R. A.
Campbell
,
A.
Zarbakhsh
, and
M.
Resmini
, “
Smart nanogels at the air/water interface: Structural studies by neutron reflectivity
,”
Nanoscale
8
,
4951
4960
(
2016
).
37.
Zielińska
,
K.
,
R. A.
Campbell
,
A.
Zarbakhsh
, and
M.
Resmini
, “
Adsorption versus aggregation of NIPAM nanogels: New insight into their behaviour at the air/water interface as a function of concentration
,”
Phys. Chem. Chem. Phys.
19
,
17173
17179
(
2017
).
38.
Camerin
,
F.
,
M. A.
Fernández-Rodríguez
,
L.
Rovigatti
,
M.-N.
Antonopoulou
,
N.
Gnan
,
A.
Ninarello
,
L.
Isa
, and
E.
Zaccarelli
, “
Microgels adsorbed at liquid-liquid interfaces: A joint numerical and experimental study
,”
ACS Nano
13
,
4548
4559
(
2019
).
39.
Bochenek
,
S.
,
F.
Camerin
,
E.
Zaccarelli
,
A.
Maestro
,
M. M.
Schmidt
,
W.
Richtering
, and
A.
Scotti
, “
In-situ study of the impact of temperature and architecture on the interfacial structure of microgels
,”
Nat. Commun.
13
,
3744
(
2022
).
40.
Geisel
,
K.
,
L.
Isa
, and
W.
Richtering
, “
The compressibility of ph-sensitive microgels at the oil-water interface: Higher charge leads to less repulsion
,”
Angew. Chem. Int. Ed.
53
,
4905
4909
(
2014
).
41.
Geisel
,
K.
,
W.
Richtering
, and
L.
Isa
, “
Highly ordered 2D microgel arrays: Compression versus self-assembly
,”
Soft Matter
10
,
7968
7976
(
2014
).
42.
Geisel
,
K.
,
A. A.
Rudov
,
I. I.
Potemkin
, and
W.
Richtering
, “
Hollow and core-shell microgels at oil-water interfaces: Spreading of soft particles reduces the compressibility of the monolayer
,”
Langmuir
31
,
13145
13154
(
2015
).
43.
Rey
,
M.
,
M. A.
Fernández-Rodríguez
,
M.
Steinacher
,
L.
Scheidegger
,
K.
Geisel
,
W.
Richtering
,
T. M.
Squires
, and
L.
Isa
, “
Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: Structure and mechanics
,”
Soft Matter
12
,
3545
3557
(
2016
).
44.
Picard
,
C.
,
P.
Garrigue
,
M.-C.
Tatry
,
V.
Lapeyre
,
S.
Ravaine
,
V.
Schmitt
, and
V.
Ravaine
, “
Organization of microgels at the air-water interface under compression: Role of electrostatics and cross-linking density
,”
Langmuir
33
,
7968
7981
(
2017
).
45.
Rey
,
M.
,
X.
Hou
,
J. S. J.
Tang
, and
N.
Vogel
, “
Interfacial arrangement and phase transitions of PNiPAm microgels with different crosslinking densities
,”
Soft Matter
13
,
8717
8727
(
2017
).
46.
Bochenek
,
S.
,
A.
Scotti
,
W.
Ogieglo
,
M. A.
Fernández-Rodríguez
,
M. F.
Schulte
,
R. A.
Gumerov
,
N. V.
Bushuev
,
I. I.
Potemkin
,
M.
Wessling
,
L.
Isa
, and
W.
Richtering
, “
Effect of the 3D swelling of microgels on their 2D phase behavior at the liquid-liquid interface
,”
Langmuir
35
,
16780
16792
(
2019
).
47.
Scotti
,
A.
,
S.
Bochenek
,
M.
Brugnoni
,
M. A.
Fernández-Rodríguez
,
M. F.
Schulte
,
J. E.
Houston
,
A. P. H.
Gelissen
,
I. I.
Potemkin
,
L.
Isa
, and
W.
Richtering
, “
Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions
,”
Nat. Commun.
10
,
1418
(
2019
).
48.
Bochenek
,
S.
,
A.
Scotti
, and
W.
Richtering
, “
Temperature-sensitive soft microgels at interfaces: Air-water versus oil-water
,”
Soft Matter
17
,
976
988
(
2021
).
49.
Pinaud
,
F.
,
K.
Geisel
,
P.
Massé
,
B.
Catargi
,
L.
Isa
,
W.
Richtering
,
V.
Ravaine
, and
V.
Schmitt
, “
Adsorption of microgels at an oil-water interface: Correlation between packing and 2D elasticity
,”
Soft Matter
10
,
6963
6974
(
2014
).
50.
Harrer
,
J.
,
M.
Rey
,
S.
Ciarella
,
H.
Löwen
,
L. M. C.
Janssen
, and
N.
Vogel
, “
Stimuli-responsive behavior of PNiPAm microgels under interfacial confinement
,”
Langmuir
35
,
10512
10521
(
2019
).
51.
Schmidt
,
M. M.
,
S.
Bochenek
,
A. A.
Gavrilov
,
I. I.
Potemkin
, and
W.
Richtering
, “
Influence of charges on the behavior of polyelectrolyte microgels confined to oil-water interfaces
,”
Langmuir
36
,
11079
11093
(
2020
).
52.
Kwok
,
M.-H.
,
G.
Sun
, and
T.
Ngai
, “
Microgel particles at interfaces: Phenomena, principles and opportunities in food science
,”
Langmuir
35
,
4205
4217
(
2019
).
53.
Rey
,
M.
,
M. A.
Fernández-Rodríguez
,
M.
Karg
,
L.
Isa
, and
N.
Vogel
, “
Poly-N-isopropylacrylamide nanogels and microgels at fluid interfaces
,”
Acc. Chem. Res.
53
,
414
424
(
2020
).
54.
Fernández-Rodríguez
,
M. A.
,
A.
Martín-Molina
, and
J.
Maldonado-Valderrama
, “
Microgels at interfaces, from mickering emulsions to flat interfaces and back
,”
Adv. Colloid Interface Sci.
288
,
102350
(
2021
).
55.
Navarro Arrebola
,
I.
,
L.
Billon
, and
G.
Aguirre
, “
Microgels self-assembly at liquid/liquid interface as stabilizers of emulsion: Past, present & future
,”
Adv. Colloid Interface Sci.
287
,
102333
(
2021
).
56.
Guzmán
,
E.
, and
A.
Maestro
, “
Soft colloidal particles at fluid interfaces
,”
Polymers
14
,
1133
(
2022
).
57.
Scotti
,
A.
,
M. F.
Schulte
,
C. G.
Lopez
,
J. J.
Crassous
,
S.
Bochenek
, and
W.
Richtering
, “
How softness matters in soft nanogels and nanogel assemblies
,”
Chem. Rev.
122
,
11675
11700
(
2022
).
58.
Miller
,
R.
,
R.
Wüstneck
,
J.
Krägel
, and
G.
Kretzschmar
, “
Dilational and shear rheology of adsorption layers at liquid interfaces
,”
Colloids Surf., A
111
,
75
118
(
1996
).
59.
Derkach
,
S. R.
,
J.
Krägel
, and
R.
Miller
, “
Methods of measuring rheological properties of interfacial layers (experimental methods of 2D rheology)
,”
Colloid J.
71
,
5
22
(
2009
).
60.
Krägel
,
J.
, and
S. R.
Derkatch
, “
Interfacial shear rheology
,”
Curr. Opin. Colloid Interface Sci.
15
,
246
255
(
2010
).
61.
Miller
,
R.
,
J. K.
Ferri
,
A.
Javadi
,
J.
Krägel
,
N.
Mucic
, and
R.
Wüstneck
, “
Rheology of interfacial layers
,”
Colloid Polym. Sci.
288
,
937
950
(
2010
).
62.
Fuller
,
G. G.
, and
J.
Vermant
, “
Complex fluid-fluid interfaces: Rheology and structure
,”
Annu. Rev. Chem. Biomol. Eng.
3
,
519
543
(
2012
).
63.
Karbaschi
,
M.
,
M.
Lotfi
,
J.
Krägel
,
A.
Javadi
,
D.
Bastiani
, and
R.
Miller
, “
Rheology of interfacial layers
,”
Curr. Opin. Colloid Interface Sci.
19
,
514
519
(
2014
).
64.
Mendoza
,
A. J.
,
E.
Guzmán
,
F.
Martínez-Pedrero
,
H.
Ritacco
,
R. G.
Rubio
,
F.
Ortega
,
V. M.
Starov
, and
R.
Miller
, “
Particle laden fluid interfaces: Dynamics and interfacial rheology
,”
Adv. Colloid Interface Sci.
206
,
303
319
(
2014
).
65.
Thijssen
,
J. H. J.
, and
J.
Vermant
, “
Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions
,”
J. Phys.: Condens. Matter
30
,
023002
(
2018
).
66.
El Omari
,
Y.
,
M.
Yousfi
,
J.
Duchet-Rumeau
, and
A.
Maazouz
, “
Recent advances in the interfacial shear and dilatational rheology of polymer systems: From fundamentals to applications
,”
Polymers
14
,
2844
(
2022
).
67.
Ravera
,
F.
,
G.
Loglio
, and
V. I.
Kovalchuk
, “
Interfacial dilatational rheology by oscillating bubble/drop methods
,”
Curr. Opin. Colloid Interface Sci.
15
,
217
228
(
2010
).
68.
Oh
,
S.-G.
, and
J. C.
Slattery
, “
Disk and biconical interfacial viscometers
,”
J. Colloid Interface Sci.
67
,
516
525
(
1978
).
69.
Ghaskadvi
,
R. S.
, and
M.
Dennin
, “
A two-dimensional Couette viscometer for Langmuir monolayers
,”
Rev. Sci. Instrum.
69
,
3568
3572
(
1998
).
70.
Vandebril
,
S.
,
A.
Franck
,
G. G.
Fuller
,
P.
Moldenaers
, and
J.
Vermant
, “
A double wall-ring geometry for interfacial shear rheometry
,”
Rheol. Acta
49
,
131
144
(
2010
).
71.
Brooks
,
C. F.
,
G. G.
Fuller
,
C. W.
Frank
, and
C. R.
Robertson
, “
An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface
,”
Langmuir
15
,
2450
2459
(
1999
).
72.
Reynaert
,
S.
,
C. F.
Brooks
,
P.
Moldenaers
,
G. G.
Fuller
, and
J.
Vermant
, “
Analysis of the magnetic rod interfacial stress rheometer
,”
J. Rheol.
52
,
261
285
(
2008
).
73.
Zell
,
Z. A.
,
V.
Mansard
,
J.
Wright
,
K.
Kim
,
S. Q.
Choi
, and
T. M.
Squires
, “
Linear and nonlinear microrheometry of small samples and interfaces using microfabricated probes
,”
J. Rheol.
60
,
141
159
(
2016
).
74.
Brugger
,
B.
,
J.
Vermant
, and
W.
Richtering
, “
Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms
,”
Phys. Chem. Chem. Phys.
12
,
14573
14578
(
2010
).
75.
Cohin
,
Y.
,
M.
Fisson
,
K.
Jourde
,
G. G.
Fuller
,
N.
Sanson
,
L.
Talini
, and
C.
Monteux
, “
Tracking the interfacial dynamics of PNiPAm soft microgels particles adsorbed at the air-water interface and in thin liquid films
,”
Rheol. Acta
52
,
445
454
(
2013
).
76.
Schmidt
,
M. M.
,
W. S.
Schier
,
O.-V.
Laukkanen
, and
W.
Richtering
, “
Interfacial shear and dilatational rheology of polyelectrolyte microgel monolayers at the oil-water interface
,”
Annu. Trans. Nord. Rheol. Soc.
29
,
3
7
(
2021
).
77.
Akentiev
,
A. V.
,
G. S.
Rybnikova
,
A. A.
Novikova
,
K. A.
Timoshen
,
I. M.
Zorin
, and
B. A.
Noskov
, “
Dynamic elasticity of films formed by poly(N-isopropylacrylamide) microparticles on a water surface
,”
Colloid J.
79
,
571
576
(
2017
).
78.
Tatry
,
M. C.
,
E.
Laurichesse
,
J.
Vermant
,
V.
Ravaine
, and
V.
Schmitt
, “
Interfacial rheology of model water-air microgel laden interfaces: Effect of cross-linking
,”
J. Colloid Interface Sci.
629
,
288
299
(
2023
).
79.
Huang
,
S.
,
K.
Gawlitza
,
R.
von Klitzing
,
W.
Steffen
, and
G. K.
Auernhammer
, “
Structure and rheology of microgel monolayers at the water/oil interface
,”
Macromolecules
50
,
3680
3689
(
2017
).
80.
Hermans
,
E.
, and
J.
Vermant
, “
Interfacial shear rheology of DPPC under physiologically relevant conditions
,”
Soft Matter
10
,
175
186
(
2014
).
81.
Schmidt
,
S.
,
T.
Liu
,
S.
Rütten
,
K.-H.
Phan
,
M.
Müller
, and
W.
Richtering
, “
Influence of microgel architecture and oil polarity on stabilization of emulsions by stimuli-sensitive core–shell poly(N-isopropylacrylamide-co-methacrylic acid) microgels: Mickering versus Pickering behavior?
,”
Langmuir
27
,
9801
9806
(
2011
).
82.
Geisel
,
K.
,
K.
Henzler
,
P.
Guttmann
, and
W.
Richtering
, “
New insight into microgel-stabilized emulsions using transmission x-ray microscopy: Nonuniform deformation and arrangement of microgels at liquid interfaces
,”
Langmuir
31
,
83
89
(
2015
).
83.
Renggli
,
D.
,
A.
Alicke
,
R. H.
Ewoldt
, and
J.
Vermant
, “
Operating windows for oscillatory interfacial shear rheology
,”
J. Rheol.
64
,
141
160
(
2020
).
84.
Jaensson
,
N.
, and
N.
Vermant
, “
Tensiometry and rheology of complex interfaces
,”
Curr. Opin. Colloid Interface Sci.
37
,
136
150
(
2018
).
85.
Bykov
,
A. G.
,
L.
Liggieri
,
B. A.
Noskov
,
P.
Pandolfini
,
F.
Ravera
, and
G.
Loglio
, “
Surface dilational rheological properties in the nonlinear domain
,”
Adv. Colloid Interface Sci.
222
,
110
118
(
2015
).
86.
Crocker
,
J. C.
, and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
87.
Carrier
,
V.
, and
G.
Petekidis
, “
Nonlinear rheology of colloidal glasses of soft thermoresponsive microgel particles
,”
J. Rheol.
53
,
245
273
(
2009
).
88.
Pellet
,
C.
, and
M.
Cloitre
, “
The glass and jamming transitions of soft polyelectrolyte microgel suspensions
,”
Soft Matter
12
,
3710
3720
(
2016
).
89.
Le Grand
,
A.
, and
G.
Petekidis
, “
Effects of particle softness on the rheology and yielding of colloidal glasses
,”
Rheol. Acta
47
,
579
590
(
2008
).
90.
Christopoulou
,
C.
,
G.
Petekidis
,
B.
Erwin
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Ageing and yield behavior in model soft colloidal glasses
,”
Philos. Trans. R. Soc., A
367
,
5051
5071
(
2009
).
91.
Hyun
,
K.
,
J. G.
Nam
,
M.
Wilhellm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions
,”
Rheol. Acta
45
,
239
249
(
2006
).
92.
Bossard
,
F.
,
M.
Moan
, and
T.
Aubry
, “
Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions
,”
J. Rheol.
51
,
1253
1270
(
2007
).
93.
Mason
,
T. G.
,
J.
Bibette
, and
D. A.
Weitz
, “
Elasticity of compressed emulsions
,”
Phys. Rev. Lett.
75
,
2051
2054
(
1995
).
94.
Saint-Jalmes
,
A.
, and
D. J.
Durian
, “
Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity
,”
J. Rheol.
43
,
1411
1422
(
1999
).
95.
Alicke
,
A.
,
S.
Simon
,
J.
Sjöblom
, and
J.
Vermant
, “
Assessing the interfacial activity of insoluble asphaltene layers: Interfacial rheology versus interfacial tension
,”
Langmuir
36
,
14942
14959
(
2020
).
96.
Verwijlen
,
T.
,
L.
Imperiali
, and
J.
Vermant
, “
Separating viscoelastic and compressibility contributions in pressure-area isotherm measurements
,”
Adv. Colloid Interface Sci.
206
,
428
436
(
2014
).
97.
Pepicelli
,
M.
,
T.
Verwijlen
,
T. A.
Tervoort
, and
J.
Vermant
, “
Characterization and modelling of Langmuir interfaces with finite elasticity
,”
Soft Matter
13
,
5977
5990
(
2017
).
98.
Dan
,
A.
,
P.
Agnihotri
,
M.
Brugnoni
,
E.
Siemes
,
D.
Wöll
,
J. J.
Crassous
, and
W.
Richtering
, “
Microgel-stabilized liquid crystal emulsions enable an analyte-induced ordering transition
,”
Chem. Commun.
55
,
7255
7258
(
2019
).
99.
Bochenek
,
S.
,
A. A.
Rudov
,
T.
Sassmann
,
I. I.
Potemkin
, and
W.
Richtering
, “
Influence of architecture on the interfacial properties of polymers: Linear chains, stars, and microgels
,”
Langmuir
39
,
18354
18365
(
2023
).
100.
Vora
,
S. R.
,
B.
Bognet
,
H. S.
Patanwala
,
C.
Young
,
S.-Y.
Chang
,
V.
Daux
, and
A. W. K.
Ma
, “
Global strain field mapping of a particle-laden interface using digital image correlation
,”
J. Colloid Interface Sci.
509
,
94
101
(
2018
).
101.
Kuk
,
K.
,
V.
Abgarjan
,
L.
Gregel
,
Y.
Zhou
,
V.
Carrasco Fadanelli
,
I.
Buttinoni
, and
M.
Karg
, “
Compression of colloidal monolayers at liquid interfaces: In situ versus ex situ investigation
,”
Soft Matter
19
,
175
188
(
2023
).
102.
Brown
,
N.
,
A.
de la Pena
, and
S.
Razavi
, “
Interfacial rheology insights: Particle texture and Pickering foam stability
,”
J. Phys.: Condens. Matter
35
,
384002
(
2023
).
103.
Pepicelli
,
M.
,
N.
Jaensson
,
C.
Tregouët
,
B.
Schroyen
,
A.
Alicke
,
T.
Tervoort
,
C.
Monteux
, and
J.
Vermant
, “
Surface viscoelasticity in model polymer multilayers: From planar interfaces to rising bubbles
,”
J. Rheol.
63
,
815
828
(
2019
).
104.
See the supplementary material online for the discussion of the different microgel softness parameters, the plots of all shear and dilatational strain amplitude sweep measurements performed at controlled interfacial pressures, the tabulated data of all experimental parameters determined from the shear and dilatational strain amplitude measurements via quantitative analysis, the alternative plots of all experimental parameters as a function of the interfacial pressure, the compression isotherms of the monolayers determined previously in another Langmuir–Pockels trough, and the alternative plot of the (effective) interfacial compression modulus as a function of the interfacial pressure.
105.
Schmidt, M. M., Laukkanen, O.-V., Bochenek, S., Schier, W. S., Richtering, W. (2024). “Interfacial rheology of polyelectrolyte microgel monolayers: correlation between mechanical properties and phase behavior at oil-water interfaces,”
RADAR4Chem
.

Supplementary Material

You do not currently have access to this content.