We report on experiments and discrete element simulations of homogeneous, simple, normal stress-controlled, shear flows of model unsaturated granular materials: assemblies of frictional spherical particles bonded by a small quantity of a wetting liquid. The rheology of such unsaturated granular materials in the dense flow regime was characterized in recent publications of our group, in terms of internal friction coefficient μ and solid fraction Φ, depending on the reduced pressure P comparing capillary forces to controlled normal stress, and on inertial number I. The present study extends this description to the influence of the liquid viscosity on material rheology in the low saturation regime. The quantitative agreement of simulations with experiments is confirmed for the quasistatic limit, and our numerical results, despite some quantitative differences, capture the correct trends in the regime dominated by viscous forces. Rheological properties are then determined, to a large extent, by the same viscous number I v as used to formulate constitutive laws in saturated, dense suspensions. More precisely, a visco-inertial number J, combining I v with inertial number I as J = I v + 2 I 2, appears apt to describe the rheological laws, as expressed by the internal friction coefficient and the solid fraction, measured in the laboratory or in the simulations, as well as the numerically investigated internal state of the flowing material. Simulations provide insight into the role of viscous forces: predominantly tensile, they contribute to the increase with shear rate of the macroscopic friction coefficient μ through a direct positive contribution to shear stress, a negative contribution to normal stresses (enhancing the strength of the contact network), and microstructural changes affecting the network of contacts and liquid bridges.

1.
Rough
,
S.
,
D.
Wilson
,
A.
Bayly
, and
D.
York
, “
Mechanisms in high-viscosity immersion–granulation
,”
Chem. Eng. Sci.
60
,
3777
3793
(
2005
).
2.
Mitarai
,
N.
, and
F.
Nori
, “
Wet granular materials
,”
Adv. Phys.
55
,
1
45
(
2006
).
3.
Strauch
,
S.
, and
S.
Herminghaus
, “
Wet granular matter: A truly complex fluid
,”
Soft Matter
8
,
8271
8280
(
2012
).
4.
Pakpour
,
M.
,
M.
Habibi
,
P.
Møller
, and
D.
Bonn
, “
How to construct the perfect sandcastle
,”
Sci. Rep.
2
,
549
(
2012
).
5.
Bocquet
,
L.
,
E.
Charlaix
, and
F.
Restagno
, “
Physics of humid granular media
,”
C. R. Phys.
3
,
207
215
(
2002
).
6.
Iveson
,
S. M.
,
J. D.
Litster
,
K.
Hapgood
, and
B. J.
Ennis
, “
Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review
,”
Powder Technol.
117
,
3
39
(
2001
).
7.
Iveson
,
S. M.
,
J. A.
Beathe
, and
N. W.
Page
, “
The dynamic strength of partially saturated powder compacts: The effect of liquid properties
,”
Powder Technol.
127
,
149
161
(
2002
).
8.
Badetti
,
M.
,
A.
Fall
,
F.
Chevoir
, and
J.-N.
Roux
, “
Shear strength of wet granular materials: Macroscopic cohesion and effective stress: Discrete numerical simulations, confronted to experimental measurements
,”
Eur. Phys. J. E
41
,
1
16
(
2018
).
9.
Badetti
,
M.
,
A.
Fall
,
D.
Hautemayou
,
F.
Chevoir
,
P.
Aimedieu
,
S.
Rodts
, and
J.-N.
Roux
, “
Rheology and microstructure of unsaturated wet granular materials: Experiments and simulations
,”
J. Rheol.
62
,
1175
1186
(
2018
).
10.
Richefeu
,
V.
,
M. S.
El Youssoufi
, and
F.
Radjai
, “
Shear strength properties of wet granular materials
,”
Phys. Rev. E
73
,
051304
(
2006
).
11.
Radjai
,
F.
, and
V.
Richefeu
, “
Bond anisotropy and cohesion of wet granular materials
,”
Philos. Trans. R. Soc. A
367
,
5123
5138
(
2009
).
12.
Scholtès
,
L.
,
P.-Y.
Hicher
,
F.
Nicot
,
B.
Chareyre
, and
F.
Darve
, “
On the capillary stress tensor in wet granular materials
,”
Int. J. Numer. Anal. Methods Geomech.
33
,
1289
1313
(
2009
).
13.
Mani
,
R.
,
D.
Kadau
, and
H. J.
Herrmann
, “
Liquid migration in sheared unsaturated granular media
,”
Granular Matter
15
,
447
454
(
2013
).
14.
Schwarze
,
R.
,
A.
Gladkyy
,
F.
Uhlig
, and
S.
Luding
, “
Rheology of weakly wetted granular materials: A comparison of experimental and numerical data
,”
Granular Matter
15
,
455
465
(
2013
).
15.
Khamseh
,
S.
,
J.-N.
Roux
, and
F.
Chevoir
, “
Flow of wet granular materials: A numerical study
,”
Phys. Rev. E
92
,
022201
(
2015
).
16.
Berger
,
N.
,
E.
Azéma
,
J.-F.
Douce
, and
F.
Radjai
, “
Scaling behaviour of cohesive granular flows
,”
Europhys. Lett.
112
,
64004
(
2016
).
17.
Than
,
V. D.
,
S.
Khamseh
,
A. M.
Tang
,
J.-M.
Pereira
,
F.
Chevoir
, and
J.-N.
Roux
, “
Basic mechanical properties of wet granular materials: A dem study
,”
J. Eng. Mech.
143
,
C4016001
(
2017
).
18.
GDRMiDi
,
On dense granular flows
,”
Eur. Phys. J. E
14
,
341
365
(
2004
).
19.
Forterre
,
Y.
, and
O.
Pouliquen
, “
Flows of dense granular media
,”
Annu. Rev. Fluid Mech.
40
,
1
24
(
2008
).
20.
Chevoir
,
F.
,
J.-N.
Roux
,
F.
da Cruz
,
P. G.
Rognon
, and
G.
Koval
, Jr.
, “
Friction law in dense granular flows
,”
Powder Technol.
190
,
264
268
(
2009
).
21.
Andreotti
,
B.
,
Y.
Forterre
, and
O.
Pouliquen
,
Granular Media: Between Fluid and Solid
(
Cambridge University
,
Cambridge
,
2013
).
22.
Gilabert
,
F.
,
J.-N.
Roux
, and
A.
Castellanos
, “
Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads
,”
Phys. Rev. E
78
,
031305
(
2008
).
23.
Singh
,
A.
,
V.
Magnanimo
,
K.
Saitoh
, and
S.
Luding
, “
Effect of cohesion on shear banding in quasistatic granular materials
,”
Phys. Rev. E
90
,
022202
(
2014
).
24.
Nedderman
,
R. M.
,
Statics and Kinematics of Granular Materials
(
Cambridge University Press
,
Cambridge
,
1992
), Vol. 352.
25.
Pierrat
,
P.
,
D. K.
Agrawal
, and
H. S.
Caram
, “
Effect of moisture on the yield locus of granular materials: Theory of shift
,”
Powder Technol.
99
,
220
227
(
1998
).
26.
Jiang
,
M.
,
S.
Leroueil
, and
J.
Konrad
, “
Insight into shear strength functions of unsaturated granulates by dem analyses
,”
Comput. Geotech.
31
,
473
489
(
2004
).
27.
Balashanmugam
,
M.
,
Y. S.
Cheong
,
M. J.
Hounslow
, and
A. D.
Salman
, “
Semi-solid paste binder dispersion in a moving powder bed
,”
Procedia Eng.
102
,
626
633
(
2015
).
28.
Cassar
,
C.
,
M.
Nicolas
, and
O.
Pouliquen
, “
Submarine granular flows down inclined planes
,”
Phys. Fluids
17
,
103301
(
2005
).
29.
Boyer
,
F.
,
É.
Guazzelli
, and
O.
Pouliquen
, “
Unifying suspension and granular rheology
,”
Phys. Rev. Lett.
107
,
188301
(
2011
).
30.
Trulsson
,
M.
,
B.
Andreotti
, and
P.
Claudin
, “
Transition from the viscous to inertial regime in dense suspensions
,”
Phys. Rev. Lett.
109
,
118305
(
2012
).
31.
Amarsid
,
L.
,
J.-Y.
Delenne
,
P.
Mutabaruka
,
Y.
Monerie
,
F.
Perales
, and
F.
Radjai
, “
Viscoinertial regime of immersed granular flows
,”
Phys. Rev. E
96
,
012901
(
2017
).
32.
Vo
,
T. T.
,
S.
Nezamabadi
,
P.
Mutabaruka
,
J.-Y.
Delenne
, and
F.
Radjai
, “
Additive rheology of complex granular flows
,”
Nat. Commun.
11
,
1476
(
2020
).
33.
Mitarai
,
N.
, and
H.
Nakanishi
, “
Granular flow: Dry and wet
,”
Eur. Phys. J. Spec. Top.
204
,
5
17
(
2012
).
34.
Liefferink
,
R.
,
B.
Weber
, and
D.
Bonn
, “
Ploughing friction on wet and dry sand
,”
Phys. Rev. E
98
,
052903
(
2018
).
35.
Van Zwol
,
P.
,
G.
Palasantzas
,
M.
Van De Schootbrugge
,
J. T. M.
De Hosson
, and
V.
Craig
, “
Roughness of microspheres for force measurements
,”
Langmuir
24
,
7528
7531
(
2008
).
36.
Fall
,
A.
,
G.
Ovarlez
,
D.
Hautemayou
,
C.
Mézière
,
J.-N.
Roux
, and
F.
Chevoir
, “
Dry granular flows: Rheological measurements of the μ (i)-rheology
,”
J. Rheol.
59
,
1065
1080
(
2015
).
37.
Radjai
,
F.
, and
F.
Dubois
,
Discrete-Element Modeling of Granular Materials
(
Wiley-ISTE
,
New York
,
2011
).
38.
Agnolin
,
I.
, and
J.-N.
Roux
, “
Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks
,”
Phys. Rev. E
76
,
061302
(
2007
).
39.
Peyneau
,
P.-E.
, and
J.-N.
Roux
, “
Solidlike behavior and anisotropy in rigid frictionless bead assemblies
,”
Phys. Rev. E
78
,
041307
(
2008
).
40.
Peyneau
,
P.-E.
, and
J.-N.
Roux
, “
Frictionless bead packs have macroscopic friction, but no dilatancy
,”
Phys. Rev. E
78
,
011307
(
2008
).
41.
Roux
,
J.-N.
, and
F.
Chevoir
, Dimensional analysis and control parameters, in Discrete-Element Modeling of Granular Materials (Wiley-ISTE, New York, 2011), Chap. 8, pp. 199–232.
42.
Scholtès
,
L.
,
B.
Chareyre
,
F.
Nicot
, and
F.
Darve
, “
Micromechanics of granular materials with capillary effects
,”
Int. J. Eng. Sci.
47
,
64
75
(
2009
).
43.
Pitois
,
O.
,
P.
Moucheront
, and
X.
Chateau
, “
Liquid bridge between two moving spheres: An experimental study of viscosity effects
,”
J. Colloid Interface Sci.
231
,
26
31
(
2000
).
44.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
45.
Gallier
,
S.
,
E.
Lemaire
,
F.
Peters
, and
L.
Lobry
, “
Rheology of sheared suspensions of rough frictional particles
,”
J. Fluid Mech.
757
,
514
549
(
2014
).
46.
Chèvremont
,
W.
,
B.
Chareyre
, and
H.
Bodiguel
, “
Quantitative study of the rheology of frictional suspensions: Influence of friction coefficient in a large range of viscous numbers
,”
Phys. Rev. Fluids
4
,
064302
(
2019
).
47.
Da Cruz
,
F.
,
S.
Emam
,
M.
Prochnow
,
J.-N.
Roux
, and
F.
Chevoir
, “
Rheophysics of dense granular materials: Discrete simulation of plane shear flows
,”
Phys. Rev. E
72
,
021309
(
2005
).
48.
de Bruyn
,
J.
, “
Unifying liquid and granular flow
,”
Physics
4
,
86
(
2011
).
49.
Guazzelli
,
E.
, and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University
,
Cambridge
,
2011
), Vol. 45.
50.
Azéma
,
E.
, and
F.
Radjai
, “
Internal structure of inertial granular flows
,”
Phys. Rev. Lett.
112
,
078001
(
2014
).
51.
Iwashita
,
K.
, and
M.
Oda
,
Mechanics of Granular Materials: An Introduction
(
CRC Press
,
Boca Raton
,
1999
).
52.
Christoffersen
,
J.
, “
Bonded granulates
,”
J. Mech. Phys. Solids
31
,
55
83
(
1983
).
53.
Mandal
,
S.
,
M.
Nicolas
, and
O.
Pouliquen
, “
Insights into the rheology of cohesive granular media
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
8366
8373
(
2020
).
54.
Mani
,
R.
,
D.
Kadau
,
D.
Or
, and
H. J.
Herrmann
, “
Fluid depletion in shear bands
,”
Phys. Rev. Lett.
109
,
248001
(
2012
).
55.
Delenne
,
J.-Y.
,
V.
Richefeu
, and
F.
Radjai
, “
Liquid clustering and capillary pressure in granular media
,”
J. Fluid Mech.
762
,
R5
(
2015
).
You do not currently have access to this content.