In this work, the nonlinear rheological behavior of aqueous suspensions composed of two typical nanocellulose [rod-like cellulose nanocrystals (CNCs) and filamentous cellulose nanofibrils (CNFs)] was examined and compared by using various large-amplitude oscillatory shear (LAOS) analysis methods, such as Fourier-transform rheology, stress decomposition, Chebyshev polynomials, and the sequence of physical processes. From our analysis, the nonlinear rheological parameters of higher harmonics, dissipation ratio, strain hardening ratio, shear thickening ratio, transient modulus, and cage modulus were obtained and quantitatively analyzed. CNCs tend to assemble to form anisotropic structures in an aqueous medium while the CNFs are entangled to form gels. The CNF suspensions demonstrated a significant viscous modulus overshoot and had stronger yield stresses, but the yield of CNC suspensions was more ductile. In the case of low concentrations, the CNF suspensions demonstrated stronger intracycle shear thickening behavior in medium-amplitude oscillatory shear region and lower dissipation ratios at small strain amplitudes. Although both nanocellulose suspensions revealed the existence of four intracycle rheological transition processes (viscoplastic deformation, structural recovery, early-stage yielding, and late-stage yielding), the CNF suspensions exhibited a stronger structural recovery ability. Larger strain amplitudes did not invariably result in a broader range of intracycle rheological transitions, which are also affected by the excitation frequency. The application of the various LAOS analysis methods provided valuable intracycle nonlinear rheological insights into nanocellulose suspensions, which are of great importance for enhancing their industrial perspectives.

1.
Vanderfleet
,
O. M.
, and
E. D.
Cranston
, “
Production routes to tailor the performance of cellulose nanocrystals
,”
Nat. Rev. Mater.
6
,
124
144
(
2021
).
2.
Li
,
T.
,
C.
Chen
,
A. H.
Brozena
,
J. Y.
Zhu
,
L.
Xu
,
C.
Driemeier
,
J.
Dai
,
O. J.
Rojas
,
A.
Isogai
,
L.
Wågberg
, and
L.
Hu
, “
Developing fibrillated cellulose as a sustainable technological material
,”
Nature
590
,
47
56
(
2021
).
3.
Droguet
,
B. E.
,
H. L.
Liang
,
B.
Frka-Petesic
,
R. M.
Parker
,
M. F. L.
De Volder
,
J. J.
Baumberg
, and
S.
Vignolini
, “
Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments
,”
Nat. Mater.
21
,
352
358
(
2022
).
4.
Li
,
M. C.
,
Q.
Wu
,
R. J.
Moon
,
M. A.
Hubbe
, and
M. J.
Bortner
, “
Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications
,”
Adv. Mater.
33
,
2006052
(
2021
).
5.
Kim
,
J. H.
,
D.
Lee
,
Y. H.
Lee
,
W.
Chen
, and
S. Y.
Lee
, “
Nanocellulose for energy storage systems: Beyond the limits of synthetic materials
,”
Adv. Mater.
31
,
1804826
(
2019
).
6.
Reshmy
,
R.
,
E.
Philip
,
A.
Madhavan
,
A.
Pugazhendhi
,
R.
Sindhu
,
R.
Sirohi
,
M. K.
Awasthi
,
A.
Pandey
, and
P.
Binod
, “
Nanocellulose as green material for remediation of hazardous heavy metal contaminants
,”
J. Hazard. Mater.
424
,
127516
(
2022
).
7.
Zhou
,
Y.
,
C.
Lu
,
Z.
Lu
,
Z.
Guo
,
C.
Ye
,
V. V.
Tsukruk
, and
R.
Xiong
, “
Chiroptical nanocellulose bio-labels for independent multi-channel optical encryption
,”
Small
19
,
2303064
(
2023
).
8.
Li
,
J.
,
Y.
Wang
,
L.
Zhang
,
Z.
Xu
,
H.
Dai
, and
W.
Wu
, “
Nanocellulose/gelatin composite cryogels for controlled drug release
,”
ACS Sustainable Chem. Eng.
7
,
6381
6389
(
2019
).
9.
Thomas
,
B.
,
M. C.
Raj
,
K. B.
Athira
,
M. H.
Rubiyah
,
J.
Joy
,
A.
Moores
,
G. L.
Drisko
, and
C.
Sanchez
, “
Nanocellulose, a versatile green platform: From biosources to materials and their applications
,”
Chem. Rev.
118
,
11575
11625
(
2018
).
10.
Patel
,
D. K.
,
K.
Ganguly
,
S. D.
Dutta
,
T. V.
Patil
, and
K. T.
Lim
, “
Cellulose nanocrystals vs. cellulose nanospheres: A comparative study of cytotoxicity and macrophage polarization potential
,”
Carbohydr. Polym.
303
,
120464
(
2023
).
11.
Morris
,
J. F.
, “
Progress and challenges in suspension rheology
,”
Rheol. Acta
62
,
617
629
(
2023
).
12.
Butler
,
J. E.
, and
B.
Snook
, “
Microstructural dynamics and rheology of suspensions of rigid fibers
,”
Annu. Rev. Fluid Mech.
50
,
299
318
(
2018
).
13.
Roure
,
O. D.
,
A.
Lindner
,
E. N.
Nazockdast
, and
M. J.
Shelley
, “
Dynamics of flexible fibers in viscous flows and fluids
,”
Annu. Rev. Fluid Mech.
51
,
539
572
(
2019
).
14.
Solomon
,
M. J.
, and
D. V.
Boger
, “
The rheology of aqueous dispersions of spindle-type colloidal hematite rods
,”
J. Rheol.
42
,
929
949
(
1998
).
15.
Aguado
,
R.
,
Q.
Tarrés
,
P.
Mutjé
,
M. À.
Pèlach
, and
M.
Delgado-Aguilar
, “
Non-covalently cationized nanocellulose from hemp: Kinetics, key properties, and paper strengthening
,”
Ind. Crops Prod.
188
,
115582
(
2022
).
16.
Liu
,
B.
,
T.
Li
,
W.
Wang
,
L. M. C.
Sagis
,
Q.
Yuan
,
X.
Lei
,
M. A.
Cohen Stuart
,
D.
Li
,
C.
Bao
,
J.
Bai
,
Z.
Yu
,
F.
Ren
, and
Y.
Li
, “
Corncob cellulose nanosphere as an eco-friendly detergent
,”
Nat. Sustainability
3
,
448
458
(
2020
).
17.
Sultan
,
S.
,
H. N.
Abdelhamid
,
X.
Zou
, and
A. P.
Mathew
, “
CelloMOF: Nanocellulose enabled 3D printing of metal–organic frameworks
,”
Adv. Funct. Mater.
29
,
1805372
(
2019
).
18.
Xu
,
L.
,
T.
Meng
,
X.
Zheng
,
T.
Li
,
A. H.
Brozena
,
Y.
Mao
,
Q.
Zhang
,
B. C.
Clifford
,
J.
Rao
, and
L.
Hu
, “
Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries
,”
Adv. Funct. Mater.
33
,
2302098
(
2023
).
19.
Wang
,
Y.
, and
C.
Selomulya
, “
Food rheology applications of large amplitude oscillation shear (LAOS)
,”
Trends Food Sci. Technol.
127
,
221
244
(
2022
).
20.
Danesh
,
M.
,
A. A.
Moud
,
D.
Mauran
,
S.
Hojabr
,
R.
Berry
,
M.
Pawlik
, and
S. G.
Hatzikiriakos
, “
The yielding of attractive gels of nanocrystal cellulose (CNC)
,”
J. Rheol.
65
,
855
869
(
2021
).
21.
Fazilati
,
M.
,
S.
Ingelsten
,
S.
Wojno
,
T.
Nypelö
, and
R.
Kádár
, “
Thixotropy of cellulose nanocrystal suspensions
,”
J. Rheol.
65
,
1035
1052
(
2021
).
22.
Keyvani
,
P.
,
K.
Nyamayaro
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Cationic and anionic cellulose nanocrystalline (CNC) hydrogels: A rheological study
,”
Phys. Fluids
33
,
043102
(
2021
).
23.
Wojno
,
S.
,
A.
Ahlinder
,
A.
Altskär
,
M.
Stading
,
T.
Abitbol
, and
R.
Kádár
, “
Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis
,”
Carbohydr. Polym.
308
,
120622
(
2023
).
24.
Xu
,
J.
,
P.
Wang
,
B.
Yuan
, and
H.
Zhang
, “
Rheology of cellulose nanocrystal and nanofibril suspensions
,”
Carbohydr. Polym.
324
,
121527
(
2024
).
25.
Sutliff
,
B. P.
,
A.
Das
,
J.
Youngblood
, and
M. J.
Bortner
, “
High shear capillary rheometry of cellulose nanocrystals for industrially relevant processing
,”
Carbohydr. Polym.
231
,
115735
(
2020
).
26.
Sutliff
,
B. P.
,
C.
Farrell
,
S. M.
Martin
, and
M. J.
Bortner
, “
Flow induced attrition of cellulose nanocrystals
,”
Carbohydr. Polym.
321
,
121252
(
2023
).
27.
Abitbol
,
T.
,
D.
Kam
,
Y.
Levi-Kalisman
,
D. G.
Gray
, and
O.
Shoseyov
, “
Surface charge influence on the phase separation and viscosity of cellulose nanocrystals
,”
Langmuir
34
,
3925
3933
(
2018
).
28.
Song
,
H. Y.
,
S. Y.
Park
,
M. C.
Kim
,
J. D.
Park
,
H. J.
Youn
, and
K.
Hyun
, “
A comparative study of the nonlinear rheological properties of three different cellulose nanofibril suspensions
,”
Phys. Fluids.
34
,
053108
(
2022
).
29.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
30.
Song
,
Y.
,
B.
Kim
,
J. D.
Park
, and
D.
Lee
, “
Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology
,”
Carbohydr. Polym.
300
,
120262
(
2023
).
31.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
32.
Wilhelm
,
M.
, “
Fourier-Transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
33.
Cho
,
K. S.
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
34.
Park
,
J. D.
, and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids.
32
,
063102
(
2020
).
35.
Park
,
J. D.
, and
S. A.
Rogers
, “
The transient behavior of soft glassy materials far from equilibrium
,”
J. Rheol.
62
,
869
888
(
2018
).
36.
Rogers
,
S. A.
, and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models
,”
J. Rheol.
56
,
1
25
(
2012
).
37.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
,
435
458
(
2011
).
38.
Lim
,
H. T.
,
K. H.
Ahn
,
J. S.
Hong
, and
K.
Hyun
, “
Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow
,”
J. Rheol.
57
,
767
789
(
2013
).
39.
Duvarci
,
O. C.
,
G.
Yazar
, and
J. L.
Kokini
, “
The comparison of LAOS behavior of structured food materials (suspensions, emulsions and elastic networks)
,”
Trends Food Sci. Technol.
60
,
2
11
(
2017
).
40.
Zhang
,
Q.
,
L.
Jiang
, and
X.
Sui
, “
Incorporating chitin nanocrystal yields stronger soy protein gel: Insights into linear and nonlinear rheological behaviors by oscillatory shear tests
,”
Food Hydrocolloids
135
,
108177
(
2023
).
41.
Song
,
H. Y.
,
S. Y.
Park
,
S.
Kim
,
H. J.
Youn
, and
K.
Hyun
, “
Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions
,”
Carbohydr. Polym.
275
,
118765
(
2022
).
42.
Wojno
,
S.
,
M.
Fazilati
,
T.
Nypelö
,
G.
Westman
, and
R.
Kádár
, “
Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear
,”
Cellulose
29
,
3655
3673
(
2022
).
43.
Stolz
,
J.
,
H.
Oguzlu
,
Z.
Khalili
, and
Y.
Boluk
, “
Exploring the gelation of aqueous cellulose nanocrystals (CNCs)-hydroxyethyl cellulose (HEC) mixtures
,”
Rheol. Acta
60
,
483
495
(
2021
).
44.
Danesh
,
M.
,
D.
Mauran
,
S.
Hojabr
,
R.
Berry
,
M.
Pawlik
, and
S. G.
Hatzikiriakos
, “
Yielding of cellulose nanocrystal suspensions in the presence of electrolytes
,”
Phys. Fluids
32
,
093103
(
2020
).
45.
Pearson
,
D. S.
, and
W. E.
Rochefort
, “
Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields
,”
J. Polym. Sci.: Polym. Phys. Ed.
20
,
83
98
(
1982
).
46.
Lee
,
S. H.
,
H.
Yong Song
,
K.
Hyun
, and
J.
Hyup Lee
, “
Nonlinearity from FT-rheology for liquid crystal 8CB under large amplitude oscillatory shear (LAOS) flow
,”
J. Rheol.
59
,
1
19
(
2015
).
47.
Abbasi Moud
,
A.
,
M.
Kamkar
,
A.
Sanati-Nezhad
,
S. H.
Hejazi
, and
U.
Sundararaj
, “
Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure in the presence of salt in aqueous media
,”
Cellulose
27
,
5729
5743
(
2020
).
48.
Ganeriwala
,
S. N.
, and
C. A.
Rotz
, “
Fourier transform mechanical analysis for determining the nonlinear viscoelastic properties of polymers
,”
Polym. Eng. Sci.
27
,
165
178
(
1987
).
49.
Choi
,
J.
,
F.
Nettesheim
, and
S. A.
Rogers
, “
The unification of disparate rheological measures in oscillatory shearing
,”
Phys. Fluids
31
,
073107
(
2019
).
50.
Erturk
,
M. Y.
,
S. A.
Rogers
, and
J.
Kokini
, “
Comparison of sequence of physical processes (SPP) and Fourier transform coupled with Chebyshev polynomials (FTC) methods to interpret large amplitude oscillatory shear (LAOS) response of viscoelastic doughs and viscous pectin solution
,”
Food Hydrocolloids
128
,
107558
(
2022
).
51.
MacKintosh
,
F. C.
,
J.
Käs
, and
P. A.
Janmey
, “
Elasticity of semiflexible biopolymer networks
,”
Phys. Rev. Lett.
75
,
4425
4428
(
1995
).
52.
Hill
,
R. J.
, “
Elastic modulus of microfibrillar cellulose gels
,”
Biomacromolecules
9
,
2963
2966
(
2008
).
53.
Xu
,
H. N.
, and
Y. H.
Li
, “
Decoupling arrest origins in hydrogels of cellulose nanofibrils
,”
ACS Omega
3
,
1564
1571
(
2018
).
54.
Mohan
,
S.
,
G. H.
Koenderink
, and
K. P.
Velikov
, “
Inelastic behaviour of cellulose microfibril networks
,”
Soft Matter
14
,
6828
6834
(
2018
).
55.
Wang
,
P.
,
J.
Xu
, and
H.
Zhang
, “
Demonstration of a facile and efficient strategy for yield stress determination in large amplitude oscillatory shear: Algebraic stress bifurcation
,”
Phys. Fluids
35
,
123107
(
2023
).
56.
Yang
,
K.
,
Z.
Liu
,
J.
Wang
, and
W.
Yu
, “
Stress bifurcation in large amplitude oscillatory shear of yield stress fluids
,”
J. Rheol.
62
,
89
106
(
2018
).
57.
Beuguel
,
Q.
,
J. R.
Tavares
,
P. J.
Carreau
, and
M. C.
Heuzey
, “
Rheological behavior of cellulose nanocrystal suspensions in polyethylene glycol
,”
J. Rheol.
62
,
607
618
(
2018
).
58.
Song
,
J.
,
M.
Caggioni
,
T. M.
Squires
,
J. F.
Gilchrist
,
S. W.
Prescott
, and
P. T.
Spicer
, “
Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 1.: bubble rheometer studies
,”
Rheol. Acta
58
,
217
229
(
2019
).
59.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newton. Fluid Mech.
107
,
51
65
(
2002
).
60.
Aime
,
S.
,
D.
Truzzolillo
,
D. J.
Pine
,
L.
Ramos
, and
L.
Cipelletti
, “
A unified state diagram for the yielding transition of soft colloids
,”
Nat. Phys.
19
,
1673
1679
(
2023
).
61.
Tirtaatmadja
,
V.
,
K. C.
Tam
, and
R. D.
Jenkins
, “
Superposition of oscillations on steady shear flow as a technique for investigating the structure of associative polymers
,”
Macromolecules
30
,
1426
1433
(
1997
).
62.
Donley
,
G. J.
,
P. K.
Singh
,
A. N.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G” overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci.
117
,
21945
21952
(
2020
).
63.
Koumakis
,
N.
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012
).
64.
Koumakis
,
N.
,
A.
Pamvouxoglou
,
A. S.
Poulos
, and
G.
Petekidis
, “
Direct comparison of the rheology of model hard and soft particle glasses
,”
Soft Matter
8
,
4271
4284
(
2012
).
65.
Wojno
,
S.
,
A. K.
Sonker
,
J.
Feldhusen
,
G.
Westman
, and
R.
Kádár
, “
Isotropic gels of cellulose nanocrystals grafted with dialkyl groups: Influence of surface group topology from nonlinear oscillatory shear
,”
Langmuir
39
,
6433
6446
(
2023
).
66.
Poulos
,
A. S.
,
F.
Renou
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: Frequency dependence
,”
Rheol. Acta
54
,
715
724
(
2015
).
67.
Kádár
,
R.
,
K.
Gaska
, and
T.
Gkourmpis
, “
Nonlinear “oddities” at the percolation of 3D hierarchical graphene polymer nanocomposites
,”
Rheol. Acta
59
,
333
347
(
2020
).
68.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
69.
Schreuders
,
F. K. G.
,
L. M. C.
Sagis
,
I.
Bodnár
,
P.
Erni
,
R. M.
Boom
, and
A. J.
van der Goot
, “
Small and large oscillatory shear properties of concentrated proteins
,”
Food Hydrocolloids
110
,
106172
(
2021
).
70.
Aliabadian
,
E.
,
S.
Sadeghi
,
M.
Kamkar
,
Z.
Chen
, and
U.
Sundararaj
, “
Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations
,”
J. Rheol.
62
,
1197
1216
(
2018
).
71.
Renou
,
F.
,
J.
Stellbrink
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
,
1219
1242
(
2010
).
72.
Rogers
,
S. A.
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
,
501
525
(
2017
).
73.
Pignon
,
F.
,
M.
Challamel
,
A.
De Geyer
,
M.
Elchamaa
,
E. F.
Semeraro
,
N.
Hengl
,
B.
Jean
,
J. L.
Putaux
,
E.
Gicquel
,
J.
Bras
,
S.
Prevost
,
M.
Sztucki
,
T.
Narayanan
, and
H.
Djeridi
, “
Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS
,”
Carbohydr. Polym.
260
,
117751
(
2021
).
74.
de Souza Mendes
,
P. R.
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol
58
,
537
561
(
2014
).
75.
Koumakis
,
N.
,
J. F.
Brady
, and
G.
Petekidis
, “
Complex oscillatory yielding of model hard-sphere glasses
,”
Phys. Rev. Lett.
110
,
178301
(
2013
).
76.
See supplementary material online for additional information on the determination of the yield stress, the dynamic strain sweep under different test conditions, normalized Lissajous-Bowditch curves, the intensity of the different higher harmonics, intracycle nonlinear parameters, and Cole-Cole plot of CNC and CNF suspensions.

Supplementary Material

You do not currently have access to this content.