The flow of dense suspension of non-Brownian particles has been considered by various studies affected by their significance in a variety of industries and natural phenomena. In this study, we investigate the effect of polyhedron morphology on shear thickening, shear jamming, and hysteresis characteristics of non-Brownian suspension of acrylate particles. Particles with the same chemical nature and three different shapes of spherical (aspect ratio Γ = 1), elliptical paraboloid (Γ ≈ 1), and boat-shaped (Γ ≈ 3) are fabricated via photopolymerization-based methods. Studied suspensions show the shear-thinning behavior at low shear stresses and shear thickening behavior at the higher range of shear stress. Also, the strength of observed shear thickening is enhanced for the suspensions of polyhedron particles, which can be attributed to the heightened degree of interparticle frictional contacts. Furthermore, it is found that angularity not only shifts the predicted frictionless and frictional jamming packing fractions to lower values but also expands the shear jamming packing fraction range. Finally, a history-dependent hysteresis is observed in all samples due to the different particle spatial structures forming in ascending and descending flow modes. The observed hysteresis loops strongly depend on the volume fraction and diminish near the jamming packing fraction due to the restricted mobility space of particles. In addition, the tumbling of elongated particles also can decrease the hysteresis loop by enhancing viscosity in the ascending flow mode, where the structures are not fully developed.

1.
Zarraga
,
I. E.
,
D. A.
Hill
, and
D. T.
Leighton
, “
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in newtonian fluids
,”
J. Rheol.
44
,
185
220
(
2000
).
2.
Moon
,
J. Y.
,
S.
Dai
,
L.
Chang
,
J. S.
Lee
, and
R. I.
Tanner
, “
The effect of sphere roughness on the rheology of concentrated suspensions
,”
J. Non-Newtonian Fluid Mech.
223
,
233
239
(
2015
).
3.
Vázquez-Quesada
,
A.
,
R. I.
Tanner
, and
M.
Ellero
, “
Shear thinning of noncolloidal suspensions
,”
Phys. Rev. Lett.
117
,
108001
(
2016
).
4.
Vázquez-Quesada
,
A.
,
A.
Mahmud
,
S.
Dai
,
M.
Ellero
, and
R. I.
Tanner
, “
Investigating the causes of shear-thinning in non-colloidal suspensions: Experiments and simulations
,”
J. Non-Newtonian Fluid Mech.
248
,
1
7
(
2017
).
5.
Lobry
,
L.
,
E.
Lemaire
,
F.
Blanc
,
S.
Gallier
, and
F.
Peters
, “
Shear thinning in non-Brownian suspensions explained by variable friction between particles
,”
J. Fluid Mech.
860
,
682
710
(
2019
).
6.
Barnes
,
H. A.
, “
Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in newtonian liquids
,”
J. Rheol.
33
,
329
366
(
1989
).
7.
Brown
,
E.
,
N. A.
Forman
,
C. S.
Orellana
,
H.
Zhang
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
Desimone
, and
H. M.
Jaeger
, “
Generality of shear thickening in dense suspensions
,”
Nat. Mater.
9
,
220
224
(
2010
).
8.
Brown
,
E.
, and
H. M.
Jaeger
, “
The role of dilation and confining stresses in shear thickening of dense suspensions
,”
J. Rheol.
56
,
875
923
(
2012
).
9.
Sierou
,
A.
, and
J. F.
Brady
, “
Rheology and microstructure in concentrated noncolloidal suspensions rheology and microstructure in concentrated noncolloidal suspensions
,”
J. Rheol.
46
,
1031
1056
(
2013
).
10.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
,
M. M.
Denn
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
11.
Brown
,
E.
, and
H. M.
Jaeger
, “
Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
,
046602
(
2014
).
12.
James
,
N. M.
,
H.
Xue
,
M.
Goyal
, and
H. M.
Jaeger
, “
Controlling shear jamming in dense suspensions: Via the particle aspect ratio
,”
Soft Matter
15
,
3649
3654
(
2019
).
13.
James
,
N. M.
,
E.
Han
,
R. A. L.
de la Cruz
,
J.
Jureller
, and
H. M.
Jaeger
, “
Interparticle hydrogen bonding can elicit shear jamming in dense suspensions
,”
Nat. Mater.
17
,
965
970
(
2018
).
14.
Brown
,
E.
,
H.
Zhang
,
N. A.
Forman
,
B. W.
Maynor
,
D. E.
Betts
,
J. M.
DeSimone
, and
H. M.
Jaeger
, “
Shear thickening and jamming in densely packed suspensions of different particle shapes
,”
Phys. Rev. E
84
,
031408
(
2011
).
15.
Otsuki
,
M.
, and
H.
Hayakawa
, “
Critical scaling near jamming transition for frictional granular particles
,”
Phys. Rev. E
83
,
051301
(
2011
).
16.
Cates
,
M. E.
,
J. P.
Wittmer
,
J.-P.
Bouchaud
, and
P.
Claudin
, “
Jamming, force chains, and fragile matter
,”
Phys. Rev. Lett.
81
,
1841
1844
(
1998
).
17.
Deegan
,
R. D.
, “
Stress hysteresis as the cause of persistent holes in particulate suspensions
,”
Phys. Rev. E
81
,
036319
(
2010
).
18.
Head
,
D. A.
,
A.
Ajdari
, and
M. E.
Cates
, “
Jamming, hysteresis, and oscillation in scalar models for shear thickening
,”
Phys. Rev. E
64
,
061509
(
2001
).
19.
Perrin
,
H.
,
C.
Clavaud
,
M.
Wyart
,
B.
Metzger
, and
Y.
Forterre
, “
Interparticle friction leads to nonmonotonic flow curves and hysteresis in viscous suspensions
,”
Phys. Rev. X
9
,
031027
(
2019
).
20.
Gadala-Maria
,
F.
, and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
,
799
814
(
1980
).
21.
Kroupa
,
M.
,
M.
Soos
, and
J.
Kosek
, “
Slip on a particle surface as the possible origin of shear thinning in non-Brownian suspensions
,”
Phys. Chem. Chem. Phys.
19
,
5979
5984
(
2017
).
22.
Papadopoulou
,
A.
,
J. J.
Gillissen
,
H. J.
Wilson
,
M. K.
Tiwari
, and
S.
Balabani
, “
On the shear thinning of non-Brownian suspensions: Friction or adhesion?
,”
J. Non-Newtonian Fluid Mech.
281
,
104298
(
2020
).
23.
Chatté
,
G.
,
J.
Comtet
,
A.
Niguès
,
L.
Bocquet
,
A.
Siria
,
G.
Ducouret
,
F.
Lequeux
,
N.
Lenoir
,
G.
Ovarlez
, and
A.
Colin
, “
Shear thinning in non-Brownian suspensions
,”
Soft Matter
14
,
879
893
(
2018
).
24.
Nazockdast
,
E.
, and
J. F.
Morris
, “
Microstructural theory and the rheology of concentrated colloidal suspensions
,”
J. Fluid Mech.
713
,
420
452
(
2012
).
25.
Wagner
,
N. J.
, and
J. F.
Brady
, “
Shear thickening in colloidal dispersions
,”
Phys. Today
62
,
27
32
(
2009
).
26.
Egres
,
R. G.
, and
N. J.
Wagner
, “
The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition
,”
J. Rheol.
49
,
719
746
(
2005
).
27.
Brown
,
E.
, and
H. M.
Jaeger
, “
Dynamic jamming point for shear thickening suspensions
,”
Phys. Rev. Lett.
103
,
086001
(
2009
).
28.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
29.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
11
,
098302
(
2014
).
30.
Hsu
,
C.-P.
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
5117
5122
(
2018
).
31.
Peters
,
I. R.
,
S.
Majumdar
, and
H. M.
Jaeger
, “
Direct observation of dynamic shear jamming in dense suspensions
,”
Nature
532
,
214
217
(
2016
).
32.
Singh
,
A.
,
R.
Mari
,
M. M.
Denn
,
J. F.
Morris
,
R.
Mari
,
M. M.
Denn
, and
J. F.
Morris
, “
A constitutive model for simple shear of dense frictional suspensions
,”
J. Rheol.
62
,
457
468
(
2018
).
33.
More
,
R. V.
, and
A. M.
Ardekani
, “
Effect of roughness on the rheology of concentrated non-Brownian suspensions: A numerical study
,”
J. Rheol.
64
,
67
80
(
2020
).
34.
Arshad
,
M.
,
A.
Maali
,
C.
Claudet
,
L.
Lobry
,
F.
Peters
, and
E.
Lemaire
, “
An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions
,”
Soft Matter
17
,
6088
6097
(
2021
).
35.
Bourrianne
,
P.
,
V.
Niggel
,
G.
Polly
,
T.
Divoux
, and
G. H.
McKinley
, “
Tuning the shear thickening of suspensions through surface roughness and physico-chemical interactions
,”
Phys. Rev. Res.
4
,
033062
(
2022
).
36.
Qin
,
J.
,
G.
Zhang
, and
X.
Shi
, “
Study of a shear thickening fluid: The suspensions of monodisperse polystyrene microspheres in polyethylene glycol
,”
J. Dispersion Sci. Technol.
38
,
935
942
(
2017
).
37.
Gilbert
,
D.
,
R.
Valette
, and
E.
Lemaire
, “
Impact of particle stiffness on shear-thinning of non-Brownian suspensions
,”
J. Rheol.
66
,
161
176
(
2022
).
38.
Zhao
,
S.
, and
X.
Zhou
, “
Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies
,”
Granular Matter
19
,
38
(
2017
).
39.
Wu
,
Y.
,
S.
Cao
,
S.
Xuan
,
M.
Sang
,
L.
Bai
,
S.
Wang
,
J.
Zhang
,
Y.
Wang
,
W.
Jiang
, and
X.
Gong
, “
High performance zeolitic imidazolate framework-8 (ZIF-8) based suspension: Improving the shear thickening effect by controlling the morphological particle-particle interaction
,”
Adv. Powder Technol.
31
,
70
77
(
2020
).
40.
Binaree
,
T.
,
E.
Azéma
,
N.
Estrada
,
M.
Renouf
, and
I.
Preechawuttipong
, “
Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media
,”
Phys. Rev. E
102
,
22901
(
2020
).
41.
Azéma
,
E.
,
F.
Radjai
, and
G.
Saussine
, “
Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles
,”
Mech. Mater.
41
,
729
741
(
2009
).
42.
Blair
,
M.
, and
C.
Ness
, “
Shear thickening in dense suspensions driven by particle interlocking
,”
J. Fluid Mech.
948
,
A48-1
A48-15
(
2022
).
43.
Chu
,
C. E.
,
J. A.
Groman
,
H. L.
Sieber
,
J. G.
Miller
,
R. J.
Okamoto
, and
J. I.
Katz
, “Hysteresis and lubrication in shear thickening of cornstarch suspensions” arXiv:1405.7233 (
2014
).
44.
Srinivasan
,
S.
,
H. E. A.
Van Den Akker
, and
O.
Shardt
, “
Shear thickening and history-dependent rheology of monodisperse suspensions with finite inertia via an immersed boundary lattice Boltzmann method
,”
Int. J. Multiphase Flow
125
,
103205
(
2020
).
45.
Mueller
,
S.
,
E. W.
Llewellin
, and
H. M.
Mader
, “
The effect of particle shape on suspension viscosity and implications for magmatic flows
,”
Geophys. Res. Lett.
38
,
L13316
, https://doi.org/10.1029/2011GL047167 (
2011
).
46.
Mueller
,
S.
,
E. W.
Llewellin
, and
H. M.
Mader
, “The rheology of suspensions of solid particles”
Proc. R. Soc. A
.
466
, 1201–1228 (2009).
47.
Zhang
,
X.
,
X. N.
Jiang
, and
C.
Sun
, “
Micro-stereolithography of polymeric and ceramic microstructures
,”
Sens. Actuators A
77
,
149
156
(
1999
).
48.
Ge
,
Q.
,
Z.
Li
,
Z.
Wang
,
K.
Kowsari
,
W.
Zhang
,
X.
He
,
J.
Zhou
, and
N. X.
Fang
, “Projection micro stereolithography based 3D printing and its applications,”
Int. J. Extrem. Manuf
. 2, 022004 (2020).
49.
Crassous
,
J. J.
,
L.
Casal-dujat
,
M.
Medebach
,
M.
Obiols-Rabasa
,
R.
Vincent
,
F.
Reinhold
,
V.
Boyko
,
I.
Willerich
,
A.
Menzel
,
C.
Moitzi
,
B.
Reck
, and
P.
Schurtenberger
, “Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition,”
Langmuir
29
(
33
),
10346
10359
(2013).
50.
Shao
,
B.
,
G. R.
Liu
,
T.
Lin
,
G. X.
Xu
,
X.
Yan
,
B.
Shao
,
G. R.
Liu
,
T.
Lin
,
G. X.
Xu
,
X.
Yan
, and
B.
Shao
, “
Rotation and orientation of irregular particles in viscous fluids using the gradient smoothed method (GSM)
,”
Eng. Appl. Comput. Fluid Mech.
11
,
557
575
(
2017
).
51.
Madraki
,
Y.
,
A.
Oakley
,
A.
Nguyen Le
,
A.
Colin
,
G.
Ovarlez
, and
S.
Hormozi
, “
Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition
,”
J. Rheol.
64
,
227
238
(
2020
).
52.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-Newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
53.
Pabst
,
W.
,
E.
Gregorová
, and
C.
Berthold
, “
Particle shape and suspension rheology of short-fiber systems
,”
J. Eur. Ceram. Soc.
26
,
149
160
(
2006
).
54.
Dhar
,
S.
,
S.
Chattopadhyay
, and
S.
Majumdar
, “
Signature of jamming under steady shear in dense particulate suspensions
,”
J. Phys.: Condens. Matter
32
,
124002
(
2020
).
55.
Corder
,
R. D.
,
Y.-J.
Chen
,
P.
Pibulchinda
,
J. P.
Youngblood
,
A. M.
Ardekani
, and
K. A.
Erk
, “
Rheology of 3D printable ceramic suspensions: Effects of non-adsorbing polymer on discontinuous shear thickening
,”
Soft Matter
19
,
882
891
(
2023
).
56.
Dong
,
K. J.
,
R. Y.
Yang
,
R. P.
Zou
, and
A. B.
Yu
, “
Role of interparticle forces in the formation of random loose packing
,”
Phys. Rev. Lett.
96
,
145505
(
2006
).
57.
Estrada
,
N.
,
E.
Azéma
,
F.
Radjai
, and
A.
Taboada
, “
Identification of rolling resistance as a shape parameter in sheared granular media
,”
Phys. Rev. E
84
,
011306
(
2011
).
58.
See the supplementary material online for additional details regarding the calculation of the effective volume fraction and surface profilometry.

Supplementary Material

You do not currently have access to this content.