Nonlinear rheology of Pickering emulsions is used to further investigate the nonlinear and unrecoverable transformation of inner structures, which is beyond the linear viscoelastic regime of tiny structural disturbances. Exploring various rheological methods plays a vital role in emulsion applications, such as simulating the macroscopic structural transformation between static and liquidlike flow states, strain overshoot, and regeneration for broken structures. According to our previous studies, cellulose nanofibers (CNFs) Pickering emulsions are a typical system for investigating polymer-based emulsions with the auxiliary surfactant [didodecyldimethylammonium bromide (DDAB)] for enhancing CNF absorption. To further study different rheological properties by varying CNF or DDAB contents, multiple interval thixotropic test, large amplitude oscillatory shear, and concentration-time-dependent superposition are employed to study the linear viscoelasticity and structural transformation of nonlinear range. This research was conducted based on the previous published works [Cui et al., Materials 15, 8285 (2022)] as a further characterization for the same sample series.

1.
Chevalier
,
Y.
, and
M. A.
Bolzinger
, “
Emulsions stabilized with solid nanoparticles: Pickering emulsions
,”
Colloids Surf., A
439
,
23
34
(
2013
).
2.
Pal
,
R.
, “
Rheology of simple and multiple emulsions
,”
Curr. Opin. Colloid Interface Sci.
16
,
41
60
(
2011
).
3.
Pickering
,
S. U.
, “
Emulsions
,”
J. Chem. Soc.
91
,
2001
2021
(
1907
).
4.
Abitbol
,
T.
,
A.
Rivkin
,
Y. F.
Cao
,
Y.
Nevo
,
E.
Abraham
,
T.
Ben-Shalom
,
S.
Lapidot
, and
O.
Shoseyov
, “
Nanocellulose, a tiny fiber with huge applications
,”
Curr. Opin. Biotechnol.
39
,
76
88
(
2016
).
5.
Li
,
Q.
,
Y. X.
Wang
,
Y. H.
Wu
,
K. H.
He
,
Y.
Li
,
X. G.
Luo
,
B.
Li
,
C. T.
Wang
, and
S. L.
Liu
, “
Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior
,”
Food Hydrocolloids
88
,
180
189
(
2019
).
6.
Costa
,
C.
,
I.
Mira
,
J. W.
Benjamins
,
B.
Lindman
,
H.
Edlund
, and
M.
Norgren
, “
Interfacial activity and emulsion stabilization of dissolved cellulose
,”
J. Mol. Liq.
292
,
111325
(
2019
).
7.
Costa
,
C.
,
B.
Medronho
,
A.
Filipe
,
I.
Mira
,
B.
Lindman
,
H.
Edlund
, and
M.
Norgren
, “
Emulsion formation and stabilization by biomolecules: The leading role of cellulose
,”
Polymers
11
, 1570 (
2019
).
8.
Calabrese
,
V.
,
J. C.
Courtenay
,
K. J.
Edler
, and
J. L.
Scott
, “
Pickering emulsions stabilized by naturally derived or biodegradable particles
,”
Curr. Opin. Green Sustainable Chem.
12
,
83
90
(
2018
).
9.
Costa
,
A. L. R.
,
A.
Gomes
,
H.
Tibolla
,
F. C.
Menegalli
, and
R. L.
Cunha
, “
Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes
,”
Carbohydr. Polym.
194
,
122
131
(
2018
).
10.
Cui
,
S. M.
,
S.
Hashmi
,
W. Q.
Li
,
S.
Handschuh-Wang
,
C. T.
Zhu
,
S. C.
Wang
,
P. P.
Yang
,
Y. F.
Huang
,
G. M.
Zhu
, and
F. J.
Stadler
, “
Influence of cellulose nanofibers on the behavior of pickering emulsions. Part 1: Microscopy and startup flow test
,”
Materials
15
,
8285
(
2022
).
11.
Winuprasith
,
T.
, and
M.
Suphantharika
, “
Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind
,”
Food Hydrocolloids
43
,
690
699
(
2015
).
12.
Datta
,
A.
,
V. S.
Tanmay
,
G. X.
Tan
,
G. W.
Reynolds
,
S. N.
Jamadagni
, and
R. G.
Larson
, “
Characterizing the rheology, slip, and velocity profiles of lamellar gel networks
,”
J. Rheol.
64
,
851
862
(
2020
).
13.
Kamkar
,
M.
,
P.
Bazazi
,
A.
Kannan
,
V. C.
Suja
,
S. H.
Hejazi
,
G. G.
Fuller
, and
U.
Sundararaj
, “
Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology
,”
J. Colloid Interface Sci.
576
,
252
263
(
2020
).
14.
Tsibranska
,
S.
,
S.
Tcholakova
,
K.
Golemanov
,
N.
Denkov
,
E.
Pelan
, and
S. D.
Stoyanov
, “
Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions
,”
J. Colloid Interface Sci.
564
,
264
275
(
2020
).
15.
Simon
,
S.
,
S.
Theiler
,
A.
Knudsen
,
G.
Oye
, and
J.
Sjöblom
, “
Rheological properties of particle-stabilized emulsions
,”
J. Dispersion Sci. Technol.
31
,
632
640
(
2010
).
16.
Harrison
,
V. G. W.
, “
Rheology of emulsions
,”
Nature
165
,
182
184
(
1950
).
17.
Li
,
M. C.
,
Q. L.
Wu
,
R. J.
Moon
,
M. A.
Hubbe
, and
M. J.
Bortner
, “
Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications
,”
Adv. Mater.
33
, 2006052 (
2021
).
18.
Siqueira
,
G.
,
D.
Kokkinis
,
R.
Libanori
,
M. K.
Hausmann
,
A. S.
Gladman
,
A.
Neels
,
P.
Tingaut
,
T.
Zimmermann
,
J. A.
Lewis
, and
A. R.
Studart
, “
Cellulose nanocrystal inks for 3D printing of textured cellular architectures
,”
Adv. Funct. Mater.
27
, 1604619 (
2017
).
19.
Zhou
,
G. Q.
,
M. C.
Li
,
C. Z.
Liu
,
Q. L.
Wu
, and
C. T.
Mei
, “
3D printed Ti 3C 2T x MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance
,”
Adv. Funct. Mater.
32
, 2109593 (
2022
).
20.
Hattrem
,
M. N.
,
S.
Molnes
,
I. J.
Haug
, and
K. I.
Draget
, “
Interfacial and rheological properties of gelatin based solid emulsions prepared with acid or alkali pretreated gelatins
,”
Food Hydrocolloids
43
,
700
707
(
2015
).
21.
Calero
,
N.
,
J.
Muñoz
,
P. W.
Cox
,
A.
Heuer
, and
A.
Guerrero
, “
Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oil and potato protein
,”
Food Hydrocolloids
30
,
152
162
(
2013
).
22.
Dickinson
,
E.
, “
Hydrocolloids at interfaces and the influence on the properties of dispersed systems
,”
Food Hydrocolloids
17
,
25
39
(
2003
).
23.
Devarajan
,
D. S.
,
P.
Nourian
,
G. B.
McKenna
, and
R.
Khare
, “
Molecular simulation of nanocolloid rheology: Viscosity, viscoelasticity, and time-concentration superposition
,”
J. Rheol.
64
,
529
543
(
2020
).
24.
Meeker
,
S. P.
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids
,”
Phys. Rev. E
55
,
5718
5722
(
1997
).
25.
Lauger
,
J.
,
K.
Wollny
, and
S.
Huck
, “
Direct strain oscillation: A new oscillatory method enabling measurements at very small shear stresses and strains
,”
Rheol. Acta
41
,
356
361
(
2002
).
26.
Li
,
Z.
,
D.
Li
,
Y.
Chen
, and
H.
Cui
, “
Study of the thixotropic behaviors of ferrofluids
,”
Soft Matter
14
,
3858
3869
(
2018
).
27.
Sun
,
G. Y.
, and
J. J.
Zhang
, “
Structural breakdown and recovery of waxy crude oil emulsion gels
,”
Rheol. Acta
54
,
817
829
(
2015
).
28.
Demir
,
M. K.
,
G.
Kutlu
, and
M. T.
Yilmaz
, “
Steady, dynamic and structural deformation (three interval thixotropy test) characteristics of gluten-free Tarhana soup prepared with different concentrations of quinoa flour
,”
J. Texture Stud.
48
,
95
102
(
2017
).
29.
Visintin
,
R. F. G.
,
R.
Lapasin
,
E.
Vignati
,
P.
D'Antona
, and
T. P.
Lockhart
, “
Rheological behavior and structural interpretation of waxy crude oil gels
,”
Langmuir
21
,
6240
6249
(
2005
).
30.
Stadler
,
F. J.
,
S. M.
Cui
,
S.
Hashmi
,
S.
Handschuh-Wang
,
W. Q.
Li
,
S. C.
Wang
,
Z. C.
Yan
, and
G. M.
Zhu
, “
Multiple interval thixotropic test (miTT)-an advanced tool for the rheological characterization of emulsions and other colloidal systems
,”
Rheol. Acta
61
,
229
242
(
2022
).
31.
Sim
,
H. G.
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: A guideline for classification
,”
J. Non-Newtonian Fluid Mech.
112
,
237
250
(
2003
).
32.
Chen
,
Y.
,
C.
Xu
,
J.
Huang
,
D.
Wu
, and
Q.
Lv
, “
Rheological properties of nanocrystalline cellulose suspensions
,”
Carbohydr. Polym.
157
,
303
310
(
2017
).
33.
Lu
,
Y.
,
X. L.
Qian
,
W. Y.
Xie
,
W. T.
Zhang
,
J.
Huang
, and
D. F.
Wu
, “
Rheology of the sesame oil-in-water emulsions stabilized by cellulose nanofibers
,”
Food Hydrocolloids
94
,
114
127
(
2019
).
34.
Wilhelm
,
M.
,
D.
Maring
, and
H. W.
Spiess
, “
Fourier-transform rheology
,”
Rheol. Acta
37
,
399
405
(
1998
).
35.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
36.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
37.
Schmidt
,
M.
, and
H.
Münstedt
, “
Reological behaviour of concentrated monodisperse suspensions as a function of preshear conditions and temperature: An experimental study
,”
Rheol. Acta
41
,
193
204
(
2002
).
38.
Schmidt
,
M.
, and
H.
Münstedt
, “
On the elastic properties of model suspensions as investigated by creep recovery measurement in shear
,”
Rheol. Acta
41
,
205
210
(
2002
).
39.
Feng
,
S.
,
J. J.
Xing
,
X. N.
Guo
, and
K. X.
Zhu
, “
Nonlinear rheological properties of Chinese cold skin noodle (liangpi) and wheat starch gels by large amplitude oscillatory shear (LAOS)
,”
Food Hydrocolloids
134
,
108030
(
2023
).
40.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newtonian Fluid Mech.
107
,
51
65
(
2002
).
41.
Blackwell
,
B. C.
, and
R. H.
Ewoldt
, “
A simple thixotropic-viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS)
,”
J. Non-Newtonian Fluid Mech.
208
,
27
41
(
2014
).
42.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves
,”
Rheol. Acta
49
,
213
219
(
2010
).
43.
Kessner
,
U.
,
J.
Kaschta
,
F. J.
Stadler
,
C.
c
,
S.
Le Duff
,
X.
Drooghaag
, and
H.
Münstedt
, “
Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure
,”
Macromolecules
43
,
7341
7350
(
2010
).
44.
Stadler
,
F. J.
,
S.
Chen
, and
S.
Chen
, “
On ‘modulus shift’ and thermorheological complexity in polyolefins
,”
Rheol. Acta
54
,
695
704
(
2015
).
45.
Kessner
,
U.
,
J.
Kaschta
, and
H.
Münstedt
, “
Determination of method-invariant activation energies of long-chain branched low-density polyethylenes
,”
J. Rheol.
53
,
1001
1016
(
2009
).
46.
Cui
,
S. M.
,
S.
Hashmi
,
W. Q.
Li
,
S.
Handschuh-Wang
,
C. T.
Zhu
,
S. C.
Wang
,
Y. F.
Huang
,
G. M.
Zhu
, and
F. J.
Stadler
, “
Rheology of graphene oxide stabilized Pickering emulsions
,”
Soft Matter
19
,
4536
4548
(
2023
).
47.
Larson
,
R. G.
, and
Y. F.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
48.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
, 018304 (
2013
).
49.
See the supplementary material online for the electronic supplementary information contains a detailed description of the miTT-protocol (Fig. SI1). Furthermore, Fig. SI2 shows the raw strain sweep data (all intervals) of all samples. Figure SI3 shows the representative G of all CNF emulsions and dependence on CNF- and DDAB-contents, respectively. Figure SI4 shows the strain sweeps plotted as a function of shear stress and the phenomenon of a maximum in stress at the onset of the nonlinear regime. Figure SI5 shows viscous Lissajous curves of CNF 2.5%–DDAB x% emulsion. The Chebyshev stress and the derived quantities G M , G L , η M , and η L are explained, and Fig. SI6 shows these quantities plotted vs γ 0. Figures SI7 and SI8 show the shifted concentration-dependent dependent master-curve for all CNF emulsions. Figure SI9 show the raw MITT data of all samples. Figure SI10 shows the unnormalized G′-values dependence on the shear rate of previous SUF protocols derived from the miTT-tests. Figure SI11 plots the Hysteresis areas of evaluated G′-values as a function of CNF and DDAB-content, and Fig. SI12 shows optical microscopic images of the emulsions with 500× magnification.

Supplementary Material

You do not currently have access to this content.