The rheological behavior of colloidal dispersions is of paramount importance in a wide range of applications, including construction materials, energy storage systems, and food industry products. These dispersions consistently exhibit non-Newtonian behaviors, a consequence of intricate interplays involving colloids morphology, volume fraction, and interparticle forces. Understanding how colloids structure under flow remains a challenge, particularly in the presence of attractive forces leading to cluster formation. In this study, we adopt a synergistic approach, combining rheology with ultra small-angle x-ray scattering, to probe the flow-induced structural transformations of attractive carbon black (CB) dispersions and their effects on the viscosity. Our key findings can be summarized as follows. First, testing different CB volume fractions, in the high shear rate hydrodynamic regime, CB particles aggregate to form fractal clusters. Their size conforms to a power law of the shear rate, ξ c γ ˙ m, with m 0.5. Second, drawing insights from the fractal structure of clusters, we compute an effective volume fraction ϕ eff and find that microstructural models adeptly account for the hydrodynamic stress contributions. We identify a critical shear rate γ ˙ and a critical volume fraction ϕ eff , at which the clusters percolate to form a dynamical network. Third, we show that the apparent yield stress measured at low shear rates inherits its properties from the percolation point. Finally, through data scaling and the integration of Einstein’s viscosity equation, we revisit and discuss the Caggioni–Trappe–Spicer model, revealing a significant connection between its empirical parameters and the structural properties of CB dispersions under flow.

1.
Chougnet
,
A.
,
T.
Palermo
,
A.
Audibert
, and
M.
Moan
, “
Rheological behaviour of cement and silica suspensions: Particle aggregation modelling
,”
Cem. Concr. Res.
38
,
1297
1301
(
2008
).
2.
Morariu
,
S.
,
M.
Teodorescu
, and
M.
Bercea
, “
Rheological investigation of polymer/clay dispersions as potential drilling fluids
,”
J. Pet. Sci. Eng.
210
,
110015
(
2022
).
3.
Alfonso
,
M. S.
,
H.
Parant
,
J.
Yuan
,
W.
Neri
,
E.
Laurichesse
,
K.
Kampioti
,
A.
Colin
, and
P.
Poulin
, “
Highly conductive colloidal carbon based suspension for flow-assisted electrochemical systems
,”
iScience
24
,
102456
(
2021
).
4.
Genovese
,
D. B.
,
J. E.
Lozano
, and
M. A.
Rao
, “
The rheology of colloidal and noncolloidal food dispersions
,”
J. Food Sci.
72
,
R11
R20
(
2007
).
5.
Xi
,
Z.
,
W.
Liu
,
D. J.
McClements
, and
L.
Zou
, “
Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content
,”
Food Chem.
291
,
22
29
(
2019
).
6.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(Cambridge University Press, 2012).
7.
Lazzari
,
S.
,
L.
Nicoud
,
B.
Jaquet
,
M.
Lattuada
, and
M.
Morbidelli
, “
Fractal-like structures in colloid science
,”
Adv. Colloid Interface Sci.
235
,
1
13
(
2016
).
8.
Zaccone
,
A.
,
H.
Winter
,
M.
Siebenbürger
, and
M.
Ballauff
, “
Linking self-assembly, rheology, and gel transition in attractive colloids
,”
J. Rheol.
58
,
1219
1244
(
2014
).
9.
Haw
,
M.
,
M.
Sievwright
,
W. C.
Poon
, and
P.
Pusey
, “
Cluster-cluster gelation with finite bond energy
,”
Adv. Colloid Interface Sci.
62
,
1
16
(
1995
).
10.
Xie
,
D.
,
H.
Wu
,
A.
Zaccone
,
L.
Braun
,
H.
Chen
, and
M.
Morbidelli
, “
Criticality for shear-induced gelation of charge-stabilized colloids
,”
Soft Matter
6
,
2692
2698
(
2010
).
11.
Weitz
,
D.
, and
M.
Oliveria
, “
Fractal structures formed by kinetic aggregation of aqueous gold colloids
,”
Phys. Rev. Lett.
52
,
1433
1436
(
1984
).
12.
Schaefer
,
D. W.
,
J. E.
Martin
,
P.
Wiltzius
, and
D. S.
Cannell
, “
Fractal geometry of colloidal aggregates
,”
Phys. Rev. Lett.
52
,
2371
2374
(
1984
).
13.
Trappe
,
V.
, and
P.
Sandkühler
, “
Colloidal gels—Low-density disordered solid-like states
,”
Curr. Opin. Colloid Interface Sci.
8
,
494
500
(
2004
).
14.
Sonntag
,
R. C.
, and
W. B.
Russel
, “
Structure and breakup of flocs subjected to fluid stresses. I. Shear experiments
,”
J. Colloid Interface Sci.
113
,
399
413
(
1986
).
15.
Zaccone
,
A.
,
M.
Soos
,
M.
Lattuada
,
H.
Wu
,
M. U.
Bäbler
, and
M.
Morbidelli
, “
Breakup of dense colloidal aggregates under hydrodynamic stresses
,”
Phys. Rev. E
79
,
061401
(
2009
).
16.
Massaro
,
R.
,
G.
Colombo
,
P.
Van Puyvelde
, and
J.
Vermant
, “
Viscoelastic cluster densification in sheared colloidal gels
,”
Soft Matter
16
,
2437
2447
(
2020
).
17.
Mewis
,
J.
, and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147-148
,
214
227
(
2009
).
18.
Varga
,
Z.
, and
J. W.
Swan
, “
Large scale anisotropies in sheared colloidal gels
,”
J. Rheol.
62
,
405
418
(
2018
).
19.
Hipp
,
J. B.
,
J. J.
Richards
, and
N. J.
Wagner
, “
Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions
,”
J. Rheol.
65
,
145
157
(
2021
).
20.
Bouthier
,
L.-V.
,
R.
Castellani
,
S.
Manneville
,
A.
Poulesquen
,
R.
Valette
, and
E.
Hachem
, “
Aggregation and disaggregation processes in clusters of particles under flow: Simple numerical and theoretical insights
,”
Phys. Rev. Fluids
8
,
023304
(
2023
).
21.
Wessel
,
R.
, and
R. C.
Ball
, “
Fractal aggregates and gels in shear flow
,”
Phys. Rev. A
46
,
3008
3011
(
1992
).
22.
Snabre
,
P.
, and
P.
Mills
, “
I. Rheology of weakly flocculated suspensions of rigid particles
,”
J. Phys. III
6
,
1811
1834
(
1996
).
23.
Potanin
,
A. A.
, “
On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow
,”
J. Colloid Interface Sci.
157
,
399
410
(
1993
).
24.
Hunter
,
R. J.
, and
J.
Frayne
, “
Flow behavior of coagulated colloidal sols. v. dynamics of floc growth under shear
,”
J. Colloid Interface Sci.
76
,
107
115
(
1980
).
25.
Brakalov
,
L.
, “
A connection between the orthokinetic coagulation capture efficiency of aggregates and their maximum size
,”
Chem. Eng. Sci.
42
,
2373
2383
(
1987
).
26.
Ruan
,
X.
,
S.
Chen
, and
S.
Li
, “
Structural evolution and breakage of dense agglomerates in shear flow and Taylor-Green vortex
,”
Chem. Eng. Sci.
211
,
115261
(
2020
).
27.
Herschel
,
W. H.
, and
R.
Bulkley
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Kolloid-Zeitschrift
39
,
291
300
(
1926
).
28.
Jeldres
,
R. I.
,
P. D.
Fawell
, and
B. J.
Florio
, “
Population balance modelling to describe the particle aggregation process: A review
,”
Powder Technol.
326
,
190
207
(
2018
).
29.
De Rooij
,
R.
,
A. A.
Potanin
,
D.
Van Den Ende
, and
J.
Mellema
, “
Transient shear viscosity of weakly aggregating polystyrene latex dispersions
,”
J. Chem. Phys.
100
,
5353
5360
(
1994
).
30.
Potanin
,
A. A.
,
R.
De Rooij
,
D.
Van Den Ende
, and
J.
Mellema
, “
Microrheological modeling of weakly aggregated dispersions
,”
J. Chem. Phys.
102
,
5845
5853
(
1995
).
31.
Wolthers
,
W.
,
M. H. G.
Duits
,
D.
van den Ende
, and
J.
Mellema
, “
Shear history dependence of the viscosity of aggregated colloidal dispersions
,”
J. Rheol.
40
,
799
811
(
1996
).
32.
Quemada
,
D.
, and
C.
Berli
, “
Energy of interaction in colloids and its implications in rheological modeling
,”
Adv. Colloid Interface Sci.
98
,
51
85
(
2002
).
33.
Silbert
,
L.
,
J.
Melrose
, and
R.
Ball
, “
The rheology and microstructure of concentrated, aggregated colloids
,”
J. Rheol.
43
,
673
700
(
1999
).
34.
Varadan
,
P.
, and
M. J.
Solomon
, “
Shear-induced microstructural evolution of a thermoreversible colloidal gel
,”
Langmuir
17
,
2918
2929
(
2001
).
35.
Quemada
,
D.
, “
Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows
,”
Rheol. Acta
17
,
632
642
(
1978
).
36.
Genovese
,
D. B.
, “
Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites
,”
Adv. Colloid Interface Sci.
171-172
,
1
16
(
2012
).
37.
Krieger
,
I. M.
, and
T. J.
Dougherty
, “
A mechanism for non-newtonian flow in suspensions of rigid spheres
,”
Trans. Soc. Rheol.
3
,
137
152
(
1959
).
38.
Gibaud
,
T.
,
T.
Divoux
, and
S.
Manneville
, “Nonlinear mechanics of colloidal gels: Creep, fatigue and shear-induced yielding,” in Encyclopedia of Complexity and Systems Science (Springer, New York, 2020), pp. 1–24.
39.
Richards
,
J. J.
,
P. Z.
Ramos
, and
Q.
Liu
, “
A review of the shear rheology of carbon black suspensions
,”
Front. Phys.
11
,
1
11
(
2023
).
40.
Trappe
,
V.
, and
D. A.
Weitz
, “
Scaling of the viscoelasticity of weakly attractive particles
,”
Phys. Rev. Lett.
85
,
449
452
(
2000
).
41.
Ovarlez
,
G.
,
L.
Tocquer
,
F.
Bertrand
, and
P.
Coussot
, “
Rheopexy and tunable yield stress of carbon black suspensions
,”
Soft Matter
9
,
5540
5549
(
2013
).
42.
Helal
,
A.
,
T.
Divoux
, and
G. H.
McKinley
, “
Simultaneous rheoelectric measurements of strongly conductive complex fluids
,”
Phys. Rev. Appl.
6
,
064004
(
2016
).
43.
Hipp
,
J. B.
,
J. J.
Richards
, and
N. J.
Wagner
, “
Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements
,”
J. Rheol.
63
,
423
436
(
2019
).
44.
Gibaud
,
T.
,
D.
Frelat
, and
S.
Manneville
, “
Heterogeneous yielding dynamics in a colloidal gel
,”
Soft Matter
6
,
3482
3488
(
2010
).
45.
Grenard
,
V.
,
T.
Divoux
,
N.
Taberlet
, and
S.
Manneville
, “
Timescales in creep and yielding of attractive gels
,”
Soft Matter
10
,
1555
1571
(
2014
).
46.
Gibaud
,
T.
,
C.
Perge
,
S. B.
Lindström
,
N.
Taberlet
, and
S.
Manneville
, “
Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress
,”
Soft Matter
12
,
1701
1712
(
2016
).
47.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
48.
Richards
,
J. J.
,
J. B.
Hipp
,
J. K.
Riley
,
N. J.
Wagner
, and
P. D.
Butler
, “
Clustering and percolation in suspensions of carbon black
,”
Langmuir
33
,
12260
12266
(
2017
).
49.
Dagès
,
N.
,
L. V.
Bouthier
,
L.
Matthews
,
S.
Manneville
,
T.
Divoux
,
A.
Poulesquen
, and
T.
Gibaud
, “
Interpenetration of fractal clusters drives elasticity in colloidal gels formed upon flow cessation
,”
Soft Matter
18
,
6645
6659
(
2022
),
50.
Bouthier
,
L.-V.
, and
T.
Gibaud
, “
Three length-scales colloidal gels: The clusters of clusters versus the interpenetrating clusters approach
,”
J. Rheol.
67
,
621
633
(
2023
).
51.
Gibaud
,
T.
,
N.
Dagès
,
P.
Lidon
,
G.
Jung
,
L. C.
Ahouré
,
M.
Sztucki
,
A.
Poulesquen
,
N.
Hengl
,
F.
Pignon
, and
S.
Manneville
, “
Rheoacoustic gels: Tuning mechanical and flow properties of colloidal gels with ultrasonic vibrations
,”
Phys. Rev. X
10
,
1
21
(
2020
).
52.
Dagès
,
N.
,
P.
Lidon
,
G.
Jung
,
F.
Pignon
,
S.
Manneville
, and
T.
Gibaud
, “
Mechanics and structure of carbon black gels under high-power ultrasound
,”
J. Rheol.
65
,
477
490
(
2021
).
53.
Liu
,
L.
,
Z.
Shen
,
X.
Zhang
, and
H.
Ma
, “
Highly conductive graphene/carbon black screen printing inks for flexible electronics
,”
J. Colloid Interface Sci.
582
,
12
21
(
2021
).
54.
Li
,
H.
,
H.-G.
Xiao
, and
J.-P.
Ou
, “
Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites
,”
Cem. Concr. Compos.
28
,
824
828
(
2006
).
55.
Liu
,
Q.
, and
J. J.
Richards
, “
Rheo-electric measurements of carbon black suspensions containing polyvinylidene difluoride in n-methyl-2-pyrrolidone
,”
J. Rheol.
67
,
647
659
(
2023
).
56.
Panine
,
P.
,
M.
Gradzielski
, and
T.
Narayanan
, “
Combined rheometry and small-angle x-ray scattering
,”
Rev. Sci. Instrum.
74
,
2451
2455
(
2003
).
57.
Divoux
,
T.
,
V.
Grenard
, and
S.
Manneville
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
,
1
7
(
2013
).
58.
Caggioni
,
M.
,
V.
Trappe
, and
P. T.
Spicer
, “
Variations of the Herschel–Bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials
,”
J. Rheol.
64
,
413
422
(
2020
).
59.
Narayanan
,
T.
,
M.
Sztucki
,
T.
Zinn
,
J.
Kieffer
,
A.
Homs-Puron
,
J.
Gorini
,
P.
Van Vaerenbergh
, and
P.
Boesecke
, “
Performance of the time-resolved ultra-small-angle x-ray scattering beamline with the extremely brilliant source
,”
J. Appl. Crystallogr.
55
,
98
111
(
2022
).
60.
Dannenberg
,
E. M.
,
L.
Paquin
, and
H.
Gwinnell
, “Carbon black,” in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 2000).
61.
Einstein
,
A.
, Eine neue bestimmung der moleküldimensionen, Ph.D. thesis, ETH Zurich, 1905.
62.
Piau
,
J.-M.
,
M.
Dorget
,
J.-F.
Palierne
, and
A.
Pouchelon
, “
Shear elasticity and yield stress of silica–silicone physical gels: Fractal approach
,”
J. Rheol.
43
,
305
314
(
1999
).
63.
Baeza
,
G. P.
,
A. C.
Genix
,
C.
Degrandcourt
,
L.
Petitjean
,
J.
Gummel
,
M.
Couty
, and
J.
Oberdisse
, “
Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM
,”
Macromolecules
46
,
317
329
(
2013
).
64.
Bouthier
,
L.-V.
, and
T.
Gibaud
, “Three length scales colloidal gels: The clusters of clusters versus the interpenetrating clusters approach,” arXiv:2210.10505 (2022).
65.
Carpineti
,
M.
,
M.
Giglio
, and
V.
Degiorgio
, “
Mass conservation and anticorrelation effects in the colloidal aggregation of dense solutions
,”
Phys. Rev. E
51
,
590
596
(
1995
).
66.
Narayanan
,
T.
,
R.
Dattani
,
J.
Möller
, and
P.
Kwaśniewski
, “
A microvolume shear cell for combined rheology and x-ray scattering experiments
,”
Rev. Sci. Instrum.
91
,
085102
(
2020
).
67.
Keshavarz
,
B.
,
D. G.
Rodrigues
,
J. B.
Champenois
,
M. G.
Frith
,
J.
Ilavsky
,
M.
Geri
,
T.
Divoux
,
G. H.
McKinley
, and
A.
Poulesquen
, “
Time-connectivity superposition and the gel/glass duality of weak colloidal gels
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2022339118
(
2021
).
68.
Conchuir
,
B. O.
,
Y. M.
Harshe
,
M.
Lattuada
, and
A.
Zaccone
, “
Analytical model of fractal aggregate stability and restructuring in shear flows
,”
Ind. Eng. Chem. Res.
53
,
9109
9119
(
2014
).
69.
Ehrl
,
L.
,
M.
Soos
, and
M.
Lattuada
, “
Generation and geometrical analysis of dense clusters with variable fractal dimension
,”
J. Phys. Chem. B
113
,
10587
10599
(
2009
).
70.
Richards
,
J. A.
,
R. E.
O’Neill
, and
W. C.
Poon
, “
Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction
,”
Rheol. Acta
60
,
97
106
(
2021
).
71.
Shih
,
W. H. W. Y.
,
W. H. W. Y.
Shih
,
S. I.
Kim
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
,
4772
4779
(
1990
).
72.
Wu
,
H.
, and
M.
Morbidelli
, “
Model relating structure of colloidal gels to their elastic properties
,”
Langmuir
17
,
1030
1036
(
2001
).
73.
Zaccone
,
A.
,
D.
Gentili
,
H.
Wu
,
M.
Morbidelli
, and
E.
Del Gado
, “
Shear-driven solidification of dilute colloidal suspensions
,”
Phys. Rev. Lett.
106
,
138301
(
2011
).
74.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
75.
Guy
,
B. M.
,
J. A.
Richards
,
D. J.
Hodgson
,
E.
Blanco
, and
W. C.
Poon
, “
Constraint-based approach to granular dispersion rheology
,”
Phys. Rev. Lett.
121
,
128001
(
2018
).
76.
Richards
,
J. A.
,
B. M.
Guy
,
E.
Blanco
,
M.
Hermes
,
G.
Poy
, and
W. C. K.
Poon
, “
The role of friction in the yielding of adhesive non-Brownian suspensions
,”
J. Rheol.
64
,
405
412
(
2020
).
77.
Wang
,
Y.
, and
R. H.
Ewoldt
, “New insights on carbon black suspension rheology – anisotropic thixotropy and anti-thixotropy,” arXiv:2202.05772 (2022), pp. 1–31.
78.
Aragón
,
S. R.
, and
R.
Pecora
, “
Theory of dynamic light scattering from polydisperse systems
,”
J. Chem. Phys.
64
,
2395
2404
(
1976
).
79.
Teixeira
,
J.
, “
Small-angle scattering by fractal systems
,”
J. Appl. Crystallogr.
21
,
781
785
(
1988
).
80.
Beaucage
,
G.
, “
Approximations leading to a unified exponential/power-law approach to small-angle scattering
,”
J. Appl. Crystallogr.
28
,
717
728
(
1995
).
81.
Beaucage
,
G.
, “
Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension
,”
J. Appl. Crystallogr.
29
,
134
146
(
1996
).
You do not currently have access to this content.