Empirical rules play a crucial role in industrial and experimental settings for efficiently determining the rheological properties of materials, thereby saving both time and resources. An example is the Cox–Merz rule, which equates the steady-shear viscosity with the magnitude of the complex viscosity obtained in oscillatory tests. This empirical rule provides access to the steady-shear viscosity that is useful for processing conditions without the instabilities associated with experiments at high shear rates. However, the Cox–Merz rule is empirical and has been shown to work in some cases and fail in others. The underlying connection between the different material functions remains phenomenological and the lack of a comprehensive understanding of the rheological physics allows for ambiguity to persist in the interpretation of material responses. In this work, we revisit the Cox–Merz rule using recovery rheology, which decomposes the strain into recoverable and unrecoverable components. When viewed through the lens of recovery rheology, it is clearly seen that the steady-shear viscosity comes from purely unrecoverable acquisition of strain, while the complex viscosity is defined in terms of contributions from both recoverable and unrecoverable components. With recovery tests in mind, we elucidate why the Cox–Merz rule works only in a limited set of conditions and present an approach that could allow for universal comparisons to be made. This work further highlights the significance of recovery rheology by showing how it is possible to extend beyond phenomenological approaches through clear rheophysical metrics obtained by decomposing the material response into recoverable and unrecoverable components.

1.
Cox
,
W.
, and
E.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
,
619
622
(
1958
).
2.
Winter
,
H. H.
, “
Three views of viscoelasticity for Cox-Merz materials
,”
Rheol. Acta
48
,
241
243
(
2009
).
3.
Sharma
,
V.
, and
G. H.
McKinley
, “
An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts
,”
Rheol. Acta
51
,
487
495
(
2012
).
4.
Kulicke
,
W.-M.
, and
R.
Porter
, “
Relation between steady shear flow and dynamic rheology
,”
Rheol. Acta
19
,
601
605
(
1980
).
5.
Laun
,
H.
, “
Prediction of elastic strains of polymer melts in shear and elongation
,”
J. Rheol.
30
,
459
501
(
1986
).
6.
Mansfied
,
C. D.
,
T.
Chen
,
M. Q.
Ansari
, and
D. G.
Baird
, “
The rheology of ultra-high molecular weight poly (ethylene oxide) dispersed in a low molecular weight carrier
,”
Phys. Fluids
34
, 023304 (
2022
).
7.
Robertson
,
C. G.
,
C.
Roland
, and
J.
Puskas
, “
Nonlinear rheology of hyperbranched polyisobutylene
,”
J. Rheol.
46
,
307
320
(
2002
).
8.
Al-Hadithi
,
T.
,
H.
Barnes
, and
K.
Walters
, “
The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems
,”
Colloid Polym. Sci.
270
,
40
46
(
1992
).
9.
Yasuda
,
K.
,
R.
Armstrong
, and
R.
Cohen
, “
Shear flow properties of concentrated solutions of linear and star branched polystyrenes
,”
Rheol. Acta
20
,
163
178
(
1981
).
10.
Robertson
,
C.
,
S.
Warren
,
D.
Plazek
, and
C.
Roland
, “
Reentanglement kinetics in sheared polybutadiene solutions
,”
Macromolecules
37
,
10018
10022
(
2004
).
11.
Chen
,
D.
,
K.
Molnar
,
H.
Kim
,
C. A.
Helfer
,
G.
Kaszas
,
J. E.
Puskas
,
J. A.
Kornfield
, and
G. B.
McKenna
, “
Linear viscoelastic properties of putative cyclic polymers synthesized by reversible radical recombination polymerization (R3P)
,”
Macromolecules
56
,
1013
1032
(
2023
).
12.
Fujii
,
Y.
,
R.
Nishikawa
,
P.
Phulkerd
, and
M.
Yamaguchi
, “
Modifying the rheological properties of polypropylene under elongational flow by adding polyethylene
,”
J. Rheol.
63
,
11
18
(
2019
).
13.
Gleissle
,
W.
, and
B.
Hochstein
, “
Validity of the Cox–Merz rule for concentrated suspensions
,”
J. Rheol.
47
,
897
910
(
2003
).
14.
Kong
,
D.
,
S.
Banik
,
M. J.
San Francisco
,
M.
Lee
,
R. M.
Robertson Anderson
,
C. M.
Schroeder
, and
G. B.
McKenna
, “
Rheology of entangled solutions of ring–linear DNA blends
,”
Macromolecules
55
,
1205
1217
(
2022
).
15.
Snijkers
,
F.
, and
D.
Vlassopoulos
, “
Appraisal of the Cox-Merz rule for well-characterized entangled linear and branched polymers
,”
Rheol. Acta
53
,
935
946
(
2014
).
16.
Marrucci
,
G.
, “
Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule
,”
J. Non-Newtonian Fluid Mech.
62
,
279
289
(
1996
).
17.
Ianniruberto
,
G.
, and
G.
Marrucci
, “
On compatibility of the Cox-Merz rule with the model of Doi and Edwards
,”
J. Non-Newtonian Fluid Mech.
65
,
241
246
(
1996
).
18.
Mead
,
D. W.
, “
Analytic derivation of the Cox-Merz rule using the MLD ‘toy’ model for polydisperse linear polymers
,”
Rheol. Acta
50
,
837
866
(
2011
).
19.
Doraiswamy
,
D.
,
A.
Mujumdar
,
I.
Tsao
,
A.
Beris
,
S.
Danforth
, and
A.
Metzner
, “
The Cox–Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress
,”
J. Rheol.
35
,
647
685
(
1991
).
20.
Mujumdar
,
A.
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
21.
Booij
,
H. C.
,
P.
Leblans
,
J.
Palmen
, and
G.
Tiemersma-Thoone
, “
Nonlinear viscoelasticity and the Cox-Merz relations for polymeric fluids
,”
J. Polym. Sci.: Polym. Phys. Ed.
21
,
1703
1711
(
1983
).
22.
Mas
,
R.
, and
A.
Magnin
, “
Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids
,”
Rheol. Acta
36
,
49
55
(
1997
).
23.
Wang
,
Y.
, and
J. J.
Wang
, “
Shear yield behavior of calcium carbonate-filled polypropylene
,”
Polym. Eng. Sci.
39
,
190
198
(
1999
).
24.
Raghavan
,
S. R.
, and
S. A.
Khan
, “
Shear-thickening response of fumed silica suspension under steady and oscillatory shear
,”
J. Colloid Interface Sci.
185
,
57
67
(
1997
).
25.
Xu
,
X.
,
X.
Tao
,
C.
Gao
, and
Q.
Zheng
, “
Studies on the steady and dynamic rheological properties of poly(dimethyl-siloxane) filled with calcium carbonate based on superposition of its relative functions
,”
J. Appl. Polym. Sci.
107
,
1590
1597
(
2008
).
26.
Bayram
,
G.
,
U.
Yilmazer
, and
N.
Orbey
, “
Viscoelastic properties of suspensions with weakly interacting particle
,”
J. Appl. Polym. Sci.
70
,
507
514
(
1998
).
27.
Kaully
,
T.
,
A.
Seigmann
, and
D.
Shacham
, “
Rheology of highly filled natural CaCO3 composites: II. Effects of solid loading and particle size distribution on rotational rheometry
,”
Polym. Compos.
28
,
524
533
(
2007
).
28.
Ureña-Benavides
,
E. E.
,
G.
Ao
,
V. A.
Davis
, and
C. L.
Kitchens
, “
Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions
,”
Macromolecules
44
,
8990
8998
(
2011
).
29.
Parisi
,
D.
,
J.
Seo
,
B.
Nazari
,
R. P.
Schaake
,
A. M.
Rhoades
, and
R. H.
Colby
, “
Shear-induced isotropic–nematic transition in poly (ether ether ketone) melts
,”
ACS Macro Lett.
9
,
950
956
(
2020
).
30.
Vallés
,
C.
,
R. J.
Young
,
D. J.
Lomax
, and
I. A.
Kinloch
, “
The rheological behaviour of concentrated dispersions of graphene oxide
,”
J. Mater. Sci.
49
,
6311
6320
(
2014
).
31.
Seo
,
J.
,
H.
Takahashi
,
B.
Nazari
,
A. M.
Rhoades
,
R. P.
Schaake
, and
R. H.
Colby
, “
Isothermal flow-induced crystallization of polyamide 66 melts
,”
Macromolecules
51
,
4269
4279
(
2018
).
32.
Parisi
,
D.
,
S.
Costanzo
,
Y.
Jeong
,
J.
Ahn
,
T.
Chang
,
D.
Vlassopoulos
,
J. D.
Halverson
,
K.
Kremer
,
T.
Ge
, and
M.
Rubinstein
, “
Nonlinear shear rheology of entangled polymer rings
,”
Macromolecules
54
,
2811
2827
(
2021
).
33.
Larson
,
R. G.
,
The Structure and Rheology of Complex Fluids
(
Oxford University
,
New York
,
1999
).
34.
Yu
,
C.
, and
S.
Gunasekaran
, “
Correlation of dynamic and steady flow viscosities of food materials
,”
Appl. Rheol.
11
,
134
140
(
2001
).
35.
Ren
,
J.
, and
R.
Krishnamoorti
, “
Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites
,”
Macromolecules
36
,
4443
4451
(
2003
).
36.
Domenech
,
T.
,
R.
Zouari
,
B.
Vergnes
, and
E.
Peuvrel-Disdier
, “
Formation of fractal-like structure in organoclay-based polypropylene nanocomposites
,”
Macromolecules
47
,
3417
3427
(
2014
).
37.
Yan
,
Z.-C.
,
S.
Costanzo
,
Y.
Jeong
,
T.
Chang
, and
D.
Vlassopoulos
, “
Linear and nonlinear shear rheology of a marginally entangled ring polymer
,”
Macromolecules
49
,
1444
1453
(
2016
).
38.
Pyromali
,
C.
,
Y.
Li
,
F.
Zhuge
,
C.-A.
Fustin
,
E.
Van Ruymbeke
, and
D.
Vlassopoulos
, “
Nonlinear shear rheology of single and double dynamics metal-ligand networks
,”
J. Rheol.
66
,
1223
1235
(
2022
).
39.
Parisi
,
D.
,
M.
Kaliva
,
S.
Costanzo
,
Q.
Huang
,
P. J.
Lutz
,
J.
Ahn
,
T.
Chang
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Nonlinear rheometry of entangled polymeric rings and ring-linear blends
,”
J. Rheol.
65
,
695
711
(
2021
).
40.
Jaishankar
,
A.
, and
G. H.
McKinley
, “
A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids
,”
J. Rheol.
58
,
1751
1788
(
2014
).
41.
Bricker
,
J. M.
, and
J. E.
Butler
, “
Oscillatory shear of suspensions of non-colloidal particles
,”
J. Rheol.
50
,
711
728
(
2006
).
42.
Eckstein
,
E. C.
,
D. G.
Bailey
, and
A. H.
Shapiro
, “
Self-diffusion of particles in shear flow of a suspension
,”
J. Fluid Mech.
79
,
191
208
(
1977
).
43.
Leighton
,
D.
, and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
44.
Gadala-Maria
,
F.
, and
A.
Acrivos
, “
Shear-induced structure in a concentrated suspension of solid spheres
,”
J. Rheol.
24
,
799
814
(
1980
).
45.
Drazer
,
G.
,
J.
Koplik
,
B.
Khusid
, and
A.
Acrivos
, “
Deterministic and stochastic behavior of non-Brownian spheres in sheared suspensions
,”
J. Fluid Mech.
460
,
307
335
(
2002
).
46.
Metzger
,
B.
, and
J. E.
Butler
, “
Irreversibility and chaos” role of long-range hydrodynamic interactions in sheared suspensions
,”
Phys. Rev. E
82
,
051406
(
2010
).
47.
Metzger
,
B.
,
P.
Pham
, and
J. E.
Butler
, “
Irreversibility and chaos: Role of lubrication interactions in sheared suspensions
,”
Phys. Rev. E
87
,
052304
(
2013
).
48.
Breedveld
,
V.
,
E.
Dvd
,
R.
Jongschaap
, and
J.
Mellema
, “
Shear-induced diffusion and rheology of noncolloidal suspensions: Time scales and particle displacements
,”
J. Chem. Phys.
114
,
5923
5936
(
2001
).
49.
Corte
,
L.
,
P. M.
Chaikin
,
J. P.
Gollub
, and
D. J.
Pine
, “
Random organization in periodically driven systems
,”
Nat. Phys.
4
(
5
),
420
424
(
2008
).
50.
Rathinaraj
,
J. D. J.
,
B.
Keshavarz
, and
G. H.
McKinley
, “
Why the Cox–Merz rule and Gleissle mirror relation work: A quantitative analysis using the Wagner integral framework with a fractional Maxwell kernel
,”
Phys. Fluids
34
, 033106 (
2022
).
51.
Rathinaraj
,
J. D. J.
,
G. H.
McKinley
, and
B.
Keshavarz
, “
Incoporating rheological nonlinearity into fractional calculus descriptions of fractal matter and multi-scale complex fluids
,”
Fractal Fract.
5
,
174
(
2021
).
52.
Lee
,
J. C.-W.
,
Y.-T.
Hong
,
K. M.
Weigandt
,
E. G.
Kelley
,
H.
Kong
, and
S. A.
Rogers
, “
Strain shifts under stress-controlled oscillatory shearing in theoretical, experimental, and structural perspectives: Application to probing zero-shear viscosity
,”
J. Rheol.
63
,
863
881
(
2019
).
53.
Lee
,
J. C.-W.
,
K. M.
Weigandt
,
E. G.
Kelley
, and
S. A.
Rogers
, “
Structure-property relationships via recovery rheology in viscoelastic materials
,”
Phys. Rev. Lett.
122
,
248003
(
2019
).
54.
Lee
,
J. C. W.
,
L.
Porcar
, and
S. A.
Rogers
, “
Recovery rheology via rheo-SANS: Application to step strains under out-of-equilibrium conditions
,”
AIChE J.
65
,
e16797
(
2019
).
55.
Donley
,
G. J.
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G ″overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
21945
21952
(
2020
).
56.
Kamani
,
K.
,
G. J.
Donley
, and
S. A.
Rogers
, “
Unification of the rheological physics of yield stress fluids
,”
Phys. Rev. Lett.
126
,
218002
(
2021
).
57.
Griebler
,
J. J.
, and
S. A.
Rogers
, “
The nonlinear rheology of complex yield stress foods
,”
Phys. Fluids
34
, 023107 (
2022
).
58.
Shim
,
Y. H.
, and
S. A.
Rogers
, “
Understanding the yielding behavior of graphene oxide colloids via experimental strain decomposition
,”
Phys. Fluids
35
, 063117 (
2023
).
59.
Shim
,
Y. H.
,
P. K.
Singh
, and
S. A.
Rogers
, “
Unified interpretation of MAOS responses via experimentally decomposed material functions
,”
J. Rheol.
67
,
1141
1158
(
2023
).
60.
Donley
,
G. J.
,
S.
Narayanan
,
M. A.
Wade
,
J. D.
Park
,
R. L.
Leheny
,
J. L.
Harden
, and
S. A.
Rogers
, “
Investigation of the yielding transition in concentrated colloidal systems via rheo-XPCS
,”
Proc. Natl. Acad. Sci. U.S.A.
120
,
e2215517120
(
2023
).
61.
Shi
,
J.
, and
S. A.
Rogers
, “
The benefits of a formalism built on recovery: Theory, experiments, and modeling
,”
J. Non-Newtonian Fluid Mech.
321
,
105113
(
2023
).
62.
Griebler
,
J. J. D.
,
J.
Gavin
,
V.
Wisniewski
, and
S. A.
Rogers
, “
Strain shift measured from stress-controlled oscillatory shear evidence for a continuous yielding transition, and new techniques to determine recovery rheology measures
,”
J. Rheol.
(to be published).
63.
Singh
,
P. K.
,
J. C.-W.
Lee
,
K. A.
Patankar
, and
S. A.
Rogers
, “
Revisiting the basis of transient rheological material functions: Insights from recoverable strain measurements
,”
J. Rheol.
65
,
129
144
(
2021
).
64.
Tschoegl
,
N. W.
,
The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction
(Springer, Berlin, Germany, 1989).
65.
Matsumoto
,
A.
,
C.
Zhang
,
F.
Scheffold
, and
A. Q.
Shen
, “
Microrheological approach for probing the entanglement properties of polyelectrolyte solutions
,”
ACS Macro Lett.
11
,
84
90
(
2021
).
66.
Pipkin
,
A. C.
,
Lectures on Viscoelasticity Theory
, 2nd ed. (Springer, New York, 1986), Vol.
7
.
67.
White
,
J. L.
, “
Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning
,”
J. Appl. Polym. Sci.
8
,
2339
2357
(
1964
).
68.
Reiner
,
M.
, “
The Deborah number
,”
Phys. Today
17
,
62
(
1964
).
69.
Dealy
,
J.
, “
Weissenberg and Deborah numbers—Their definition and use
,”
Rheol. Bull
79
,
14
18
(
2010
).
You do not currently have access to this content.