The influence of apparent slip on oscillatory shear measurements of a viscoplastic microgel [0.6 wt. % of poly(acrylic acid)] is analyzed by Couette and parallel-plate rheometry and particle image velocimetry (Rheo-PIV). We first provide direct evidence of a critical shear stress for the onset of slip of the microgel under oscillatory (σos) and nonoscillatory measurements (σs). Afterward, we describe the effect of slip on oscillatory measurements via waveforms, Bowditch–Lissajous curves, Fourier transform (FT) rheology, PIV, and as a sequence of physical processes (SPP). The effect of slip is mainly observed at low oscillating frequencies. For amplitudes of the oscillating stresses σ0 ≤ σos, the microgel exhibits linear viscoelastic behavior with in-phase strain response. For σos< σ0 ≤ yield stress (σy), slip introduces a phase shift in the strain response with a forward-tilted waveform and “mango” shape Bowditch–Lissajous curves. Meanwhile, FT rheology shows negligible even harmonics. The strain measured by the rheometer does not match the true strain determined by PIV in the presence of slip, resulting in waveforms that depend on how the displacement distribution is interpreted. This result indicates a break in the symmetry of the flow, that is, the microgel response no longer follows the imposed oscillation, which makes any attempt to correct oscillatory data for slip complex. This behavior arises from recoil of the slipping microgel after reaching its maximum displacement in a cycle. Finally, we provide an overall picture of the kinematics of the process of yielding in the presence of slip as an SPP.

1.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Non-Newtonian Fluid Mech.
211
,
31
49
(
2014
).
2.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
3.
Cloitre
,
M.
, and
R. T.
Bonnecaze
, “
A review on wall slip in high solid dispersions
,”
Rheol. Acta
56
,
283
305
(
2017
).
4.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
5.
Wilson
,
D. I.
, “
Industrial applications of yield stress fluids
,” in
Lectures on Visco-Plastic Fluid Mechanics
, edited by
G.
Ovarlez
and
S.
Hormozi
, CISM International Centre for Mechanical Sciences (
Springer
,
Switzerland
,
2019
), p.
583
, see https://doi.org/10.1007/978-3-319-89438-6.
6.
Mannheimer
,
R. J.
, “
Anomalous rheological characteristics of a high-internal-phase-ratio emulsion
,”
J. Colloid Interface Sci.
40
(
3
),
370
382
(
1972
).
7.
Buscall
,
R.
,
J. I.
McGowan
, and
A. J.
Morton-Jones
, “
The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip
,”
J. Rheol.
37
(
4
),
621
641
(
1993
).
8.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in pastes of soft particles: Direct observation and rheology
,”
J. Rheol.
48
(
6
),
1295
1320
(
2004
).
9.
Zhang
,
X.
,
E.
Lorenceau
,
P.
Basset
,
T.
Bourouina
,
F.
Rouyer
,
J.
Goyon
, and
P.
Coussot
, “
Wall slip of soft-jammed systems: A generic simple shear process
,”
Phys. Rev. Lett.
119
(
20
),
208004
(
2017
).
10.
Aktas
,
S.
,
D. M.
Kalyon
,
B. M.
Marín-Santibáñez
, and
J.
Pérez-González
, “
Shear viscosity and wall slip behavior of a viscoplastic hydrogel
,”
J. Rheol.
58
(
2
),
513
535
(
2014
).
11.
Egger
,
H.
, and
K. M.
McGrath
, “
Estimating depletion layer thickness in colloidal systems: Correlation with oil-in-water emulsion composition
,”
Colloids Surf., A
275
(
1-3
),
107
113
(
2006
).
12.
Princen
,
H. M.
, “
Rheology of foams and highly concentrated emulsions: II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions
,”
J. Colloid Interface Sci.
105
(
1
),
150
171
(
1985
).
13.
Seth
,
J. R.
,
M.
Cloitre
, and
R. T.
Bonnecaze
, “
Influence of short-range forces on wall-slip in microgel pastes
,”
J. Rheol.
52
(
5
),
1241
1268
(
2008
).
14.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
, and
J.
Pérez-González
, “
Rheo-PIV analysis of the steady torsional parallel-plate flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
66
(
1
),
31
48
(
2022
).
15.
Ballesta
,
P.
,
R.
Besseling
,
L.
Isa
,
G.
Petekidis
, and
W. C. K.
Poon
, “
Slip and flow of hard-sphere colloidal glasses
,”
Phys. Rev. Lett.
101
,
258301
(
2008
).
16.
Zhang
,
X.
,
E.
Lorenceau
,
T.
Bourouina
,
P.
Basset
,
T.
Oerther
,
M.
Ferrari
,
F.
Rouyer
,
J.
Goyon
, and
P.
Coussot
, “
Wall slip mechanisms in direct and inverse emulsions
,”
J. Rheol.
62
(
6
),
1495
1513
(
2018
).
17.
Perge
,
C.
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
(
5
),
1331
1357
(
2014
).
18.
Yoshimura
,
A. S.
, and
R. K.
Prud'homme
, “
Wall slip effects on dynamic oscillatory measurements
,”
J. Rheol.
32
(
6
),
575
584
(
1988
).
19.
Yoshimura
,
A. S.
, and
R. K.
Prud'homme
, “
Response of an elastic Bingham fluid to oscillatory shear
,”
Rheol. Acta
26
,
428
436
(
1987
).
20.
Hyun
,
K.
,
S. H.
Kim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear as a way to classify the complex fluids
,”
J. Non-Newtonian Fluid Mech.
107
(
1–3
),
51
65
(
2002
).
21.
Hyun
,
K.
,
J. G.
Nam
,
M.
Wilhelm
,
K. H.
Ahn
, and
S. J.
Lee
, “
Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow
,”
Korea Aust. Rheol. J.
15
(
2
),
97
105
(
2003
).
22.
Asai
,
H.
,
A.
Masuda
, and
M.
Kawaguchi
, “
Rheological properties of colloidal gels formed from fumed silica suspensions in the presence of cationic surfactants
,”
J. Colloid Interface Sci.
328
(
1
),
180
185
(
2008
).
23.
Hilliou
,
L.
,
M.
Wilhelm
,
M.
Yamanoi
, and
M. P.
Gonçalves
, “
Structural and mechanical characterization of κ/ι-hybrid carrageenan gels in potassium salt using Fourier transform rheology
,”
Food Hydrocoll.
23
(
8
),
2322
2330
(
2009
).
24.
Ewoldt
,
R. H.
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
(
2
),
191
212
(
2010
).
25.
Reinheimer
,
K.
,
M.
Grosso
, and
M.
Wilhelm
, “
Fourier transform rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions
,”
J. Colloid Interface Sci.
360
(
2
),
818
825
(
2011
).
26.
Hyun
,
K.
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
27.
Rogers
,
S. A.
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
(
2
),
435
458
(
2011
).
28.
Rogers
,
S. A.
, and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
,”
J. Rheol.
56
(
1
),
1
25
(
2012
).
29.
Dimitriou
,
C. J.
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress)
,”
J. Rheol.
57
(
1
),
27
70
(
2013
).
30.
Ong
,
E. Y. X.
,
M.
Ramaswamy
,
R.
Niu
,
N. Y. C.
Lin
,
A.
Shetty
,
R. N.
Zia
,
G. H.
McKinley
, and
I.
Cohen
, “
Stress decomposition in LAOS of dense colloidal suspensions
,”
J. Rheol.
64
(
2
),
343
351
(
2020
).
31.
Donley
,
G. J.
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
PNAS
117
(
36
),
21945
21952
(
2020
).
32.
Donley
,
G. J.
,
J. R.
de Bruyn
,
G. H.
McKinley
, and
S. A.
Rogers
, “
Time-resolved dynamics of the yielding transition in soft materials
,”
J. Non-Newtonian Fluid Mech.
264
,
117
134
(
2019
).
33.
Walls
,
H. J.
,
S. B.
Caines
,
A. M.
Sanchez
, and
S. A.
Khan
, “
Yield stress and wall slip phenomena in colloidal silica gels
,”
J. Rheol.
47
(
4
),
847
868
(
2003
).
34.
Ozkan
,
S.
,
T. W.
Gillece
,
L.
Senak
, and
D. J.
Moore
, “
Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes
,”
Int. J. Cosmet. Sci.
34
(
2
),
193
201
(
2012
).
35.
Ahonguio
,
F.
,
L.
Jossic
, and
A.
Magnin
, “
Influence of slip on the flow of a yield stress fluid around a flat plate
,”
AIChE J.
62
(
4
),
1356
1363
(
2016
).
36.
Yang
,
K.
, and
W.
Yu
, “
Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear
,”
J. Rheol.
61
(
4
),
627
641
(
2017
).
37.
Hatzikiriakos
,
S. G.
, and
J. M.
Dealy
, “
Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies
,”
J. Rheol.
35
(
4
),
497
523
(
1991
).
38.
Graham
,
M. D.
, “
Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows
,”
J. Rheol.
39
(
4
),
697
712
(
1995
).
39.
Reimers
,
M. J.
, and
J. M.
Dealy
, “
Sliding plate rheometer studies of concentrated polystyrene solutions: Large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate
,”
J. Rheol.
40
(
1
),
167
186
(
1996
).
40.
Klein
,
C. O.
,
H. W.
Spiess
,
A.
Calin
,
C.
Balan
, and
M.
Wilhelm
, “
Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response
,”
Macromolecules
40
(
12
),
4250
4259
(
2007
).
41.
Radhakrishnan
,
R.
, and
S. M.
Fielding
, “
Shear banding of soft glassy materials in large amplitude oscillatory shear
,”
Phys. Rev. Lett.
117
(
18
),
188001
(
2016
).
42.
Radhakrishnan
,
R.
, and
S. M.
Fielding
, “
Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of soft glassy materials
,”
J. Rheol.
62
(
2
),
559
576
(
2018
).
43.
Gibaud
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
Influence of boundary conditions on yielding in a soft glassy material
,”
Phys. Rev. Lett.
101
(
25
),
258302
(
2008
).
44.
Guo
,
Y.
,
W.
Yu
,
Y.
Xu
, and
C.
Zhou
, “
Correlations between local flow mechanism and macroscopic rheology in concentrated suspensions under oscillatory shear
,”
Soft Matter
7
(
6
),
2433
2443
(
2011
).
45.
Dimitriou
,
C. J.
,
L.
Casanellas
,
T. J.
Ober
, and
G. H.
McKinley
, “
Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear
,”
Rheol. Acta
51
(
5
),
395
411
(
2012
).
46.
Saint-Michel
,
B.
,
T.
Gibaud
,
M.
Leocmach
, and
S.
Manneville
, “
Local oscillatory rheology from echography
,”
Phys. Rev. Appl.
5
(
3
),
034014
(
2016
).
47.
Ewoldt
,
R. H.
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
48.
Erturk
,
M. Y.
,
S. A.
Rogers
, and
J.
Kokini
, “
Comparison of sequence of physical processes (SPP) and Fourier transform coupled with Chebyshev polynomials (FTC) methods to interpret large amplitude oscillatory shear (LAOS) response of viscoelastic doughs and viscous pectin solution
,”
Food Hydrocoll.
128
,
107558
(
2022
).
49.
Tschoegl
,
N. W.
,
The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction
(
Springer-Verlag
,
Berlin
,
1989
).
50.
Ilyin
,
S. O.
,
A. Y.
Malkin
, and
V. G.
Kulichikhin
, “
Application of large amplitude oscillatory shear for the analysis of polymer material properties in the nonlinear mechanical behavior
,”
Polym. Sci.
56
(
1
),
98
110
(
2014
).
51.
Lee
,
J. C.-W.
,
K. M.
Weigandt
,
E. G.
Kelley
, and
S. A.
Rogers
, “
Structure-property relationships via recovery rheology in viscoelastic materials
,”
Phys. Rev. Lett.
122
(
24
),
248003
(
2019
).
52.
Park
,
J. D.
, and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids
32
(
6
),
063102
(
2020
).
53.
Kamani
,
K. M.
,
G. J.
Donley
,
R.
Rao
,
A. M.
Grillet
,
C.
Roberts
,
A.
Shetty
, and
S. A.
Rogers
, “
Understanding the transient large amplitude oscillatory shear behavior of yield stress fluids
,”
J. Rheol.
67
,
331
352
(
2023
).
54.
Dinkgreve
,
M.
,
M.
Fazilati
,
M. M.
Denn
, and
D.
Bonn
, “
Carbopol: From a simple to a thixotropic yield stress fluid
,”
J. Rheol.
62
(
3
),
773
780
(
2018
).
55.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
F.
Rodríguez-González
, “
Couette flow of a yield-stress fluid with slip as studied by Rheo-PIV
,”
Appl. Rheol.
27
(
5
),
53893
(
2017
).
56.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
,
M.
Malik
, and
D. M.
Kalyon
, “
Tangential annular (Couette) flow of a viscoplastic microgel with wall slip
,”
J. Rheol.
61
(
5
),
1007
1022
(
2017
).
57.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
J.
Pérez-González
, and
D. M.
Kalyon
, “
Rheo-PIV analysis of the vane in cup flow of a viscoplastic microgel
,”
J: Rheol.
63
(
6
),
905
915
(
2019
).
58.
Medina-Bañuelos
,
E. F.
,
B. M.
Marín-Santibáñez
,
E.
Chaparian
,
C. E.
Owens
,
G. H.
McKinley
, and
J.
Pérez-González
, “
Rheo-PIV of yield-stress fluids in a 3D-printed fractal vane-in-cup geometry
,”
J. Rheol.
67
(
4
),
891
908
(
2023
).
59.
Macosko
,
C. W.
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
60.
Coussot
,
P.
,
L.
Tocquer
,
C.
Lanos
, and
G.
Ovarlez
, “
Macroscopic vs. local rheology of yield stress fluids
,”
J. Non-Newtonian Fluid Mech.
158
(
1–3
),
85
90
(
2009
).
61.
Magnin
,
A.
, and
J. M.
Piau
, “
Cone-and-plate rheometry of yield stress fluids: Study of an aqueous gel
,”
J. Non-Newtonian Fluid Mech.
36
,
85
108
(
1990
).
62.
Piau
,
J. M.
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso- and macroscopic properties, constitutive equations and scaling laws
,”
J. Non-Newtonian Fluid Mech.
144
(
1
),
1
29
(
2007
).
63.
Seth
,
J. R.
,
C.
Locatelli-Champagne
,
F.
Monti
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
How do soft particle glasses yield and flow near solid surfaces?
,”
Soft Matter
8
(
1
),
140
148
(
2012
).
64.
Divoux
,
T.
,
V.
Lapeyre
,
V.
Ravaine
, and
S.
Manneville
, “
Wall slip across the jamming transition of soft thermoresponsive particles
,”
Phys. Rev. E
92
(
6
),
060301
(
2015
).
65.
Meeker
,
S. P.
,
R. T.
Bonnecaze
, and
M.
Cloitre
, “
Slip and flow in soft particle pastes
,”
Phys. Rev. Lett.
92
(
19
),
198302
(
2004
).
66.
Dimitriou
,
C. J.
,
G. H.
McKinley
, and
R.
Venkatesan
, “
Rheo-PIV analysis of the yielding and flow of model waxy crude oils
,”
Energy Fuels
25
(
7
),
3040
3052
(
2011
).
67.
Kamani
,
K.
,
G. J.
Donley
, and
S. A.
Rogers
, “
Unification of the rheological physics of yield stress fluids
,”
Phys. Rev. Lett.
126
(
21
),
218002
(
2021
).
68.
Parisi
,
D.
,
D.
Vlassopoulos
,
H.
Kriegs
,
J. K. G.
Dhont
, and
K.
Kang
, “
Underlying mechanism of shear-banding in soft glasses of charged colloidal rods with orientational domains
,”
J. Rheol.
66
(
2
),
365
373
(
2022
).
69.
Atalık
,
K.
, and
R.
Keunings
, “
On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear
,”
J. Non-Newtonian Fluid Mech.
122
(
1–3
),
107
116
(
2004
).
70.
The Simon Rogers Group for Soft Matter Research. University of Illinois at Urbana-Champaign, See https://publish.illinois.edu/rogerssoftmatter/freeware for “SPP LAOS Freeware” (accessed October 9, 2017).
71.
Oelschlaeger
,
C.
,
J.
Marten
,
F.
Péridont
, and
N.
Willenbacher
, “
Imaging of the microstructure of carbopol dispersions and correlation with their macroelasticity: A micro- and macrorheological study
,”
J. Rheol.
66
(
4
),
749
760
(
2022
).
72.
See supplementary material online for video of the oscillating flow in the CC gap for σ0 = 19.761 Pa (σ0 > σos). The yellow arrows signal tracking particles and the red vertical lines indicate the limits of displacement. The red horizontal lines in the insets represent the instantaneous displacement of the bulk at the bob, κR, and cup, R. Note the break in the symmetry between the bob and the slipping gel displacements, that is, when the bob accelerates in one direction, part of the bulk moves in the wrong way. This can be better appreciated when the video is starting.

Supplementary Material

You do not currently have access to this content.