Equibiaxial elongational deformations are omnipresent in polymer processing technologies. The challenge of generating well-controlled equibiaxial elongational deformations in the laboratory has, however, severely inhibited progress on understanding the rheology of polymeric liquids and other complex fluids in this flow. More recently, a novel technique known as continuous lubricated squeezing flow has been developed that allows for rheological measurements in equibiaxial elongational deformations. In the present study, we examine the rheological behavior of two entangled polyisobutylene (PIB) melts with different molecular weight distributions in constant strain rate equibiaxial elongation flows. These new data are compared with predictions from two molecular models for entangled polymer melts inspired by the idea that entanglements dominate the relaxation dynamics. One model is the discrete slip-link model (DSM), and the other is known as the Rolie Double Poly (RDP) model. For the PIB with a relatively narrow molecular weight distribution, the predictions of both models are in good agreement with experiments and the DSM gives nearly quantitative agreement. For the broad molecular weight distribution PIB, both the DSM and RDP model predict strain hardening, which is not observed in the experiments.

1.
Macosko
,
C. W.
,
Rheology: Principles, Measurements and Applications
(
VCH
,
New York
,
1994
).
2.
Meissner
,
J.
, and
J.
Hostettler
, “
A new elongational rheometer for polymer melts and other highly viscoelastic liquids
,”
Rheol. Acta
33
,
1
21
(
1994
).
3.
Meissner
,
J.
,
T.
Raible
, and
S. E.
Stephenson
, “
Rotary clamp in uniaxial and biaxial extensional rheometry of polymer melts
,”
J. Rheol.
25
,
1
28
(
1981
).
4.
Hachmann
,
P.
, and
J.
Meissner
, “
Rheometer for equibiaxial and planar elongations of polymer melts
,”
J. Rheol.
47
,
989
1010
(
2003
).
5.
Chatraei
,
S. H.
,
C. W.
Macosko
, and
H. H.
Winter
, “
Lubricated squeezing flow: A new biaxial extensional rheometer
,”
J. Rheol.
25
,
433
443
(
1981
).
6.
Ebrahimi
,
N. G.
,
M.
Takahashi
,
O.
Araki
, and
T.
Masuda
, “
Biaxial extensional flow behavior of monodisperse polystyrene melts
,”
Acta Polym.
46
,
267
270
(
1995
).
7.
Hsu
,
T. C.
, and
I. R.
Harrison
, “
Measurement of the equibiaxial elongation viscosity of polystyrene using lubricated squeezing
,”
Polym. Eng. Sci.
31
,
223
230
(
1991
).
8.
Isaki
,
T.
,
M.
Takahashi
, and
O.
Urakawa
, “
Biaxial damping function of entangled monodisperse polystyrene melts: Comparison with the Mead-Larson-Doi model
,”
J. Rheol.
47
,
1201
1210
(
2003
).
9.
Khan
,
S. A.
,
R. K.
Prud’homme
, and
R. G.
Larson
, “
Comparison of the rheology of polymer melts in shear, and biaxial and uniaxial extensions
,”
Rheol. Acta
26
,
144
151
(
1987
).
10.
Nishioka
,
A.
,
T.
Takahashi
,
Y. M. J.
Takimoto
, and
K.
Koyama
, “
Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model
,”
J. Non-Newtonian Fluid Mech.
89
,
287
301
(
2000
).
11.
Okamoto
,
K.
, and
M.
Yamaguchi
, “
Stress relaxation under large step equibiaxial elongation for low-density polyethylene
,”
J. Polym. Sci., Part B
47
,
1275
1284
(
2009
).
12.
Soskey
,
P. R.
, and
H. H.
Winter
, “
Equibiaxial extension of two polymer melts: Polystyrene and low density polyethylene
,”
J. Rheol.
29
,
493
517
(
1985
).
13.
Stadler
,
F. J.
,
A.
Nishioka
,
J.
Stange
,
K.
Koyama
, and
H.
Münstedt
, “
Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows
,”
Rheol. Acta
46
,
1003
1012
(
2007
).
14.
Takahashi
,
M.
,
T.
Isaki
,
T.
Takigawa
, and
T.
Masuda
, “
Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates
,”
J. Rheol.
37
,
827
846
(
1993
).
15.
Urakawa
,
O.
,
M.
Takahashi
,
T.
Masuda
, and
N. G.
Ebrahimi
, “
Damping functions and chain relaxation in uniaxial and biaxial extensions: Comparison with the Doi-Edwards theory
,”
Macromolecules
28
,
7196
7201
(
1995
).
16.
Yamane
,
H.
,
K.
Sasai
,
M.
Takano
, and
M.
Takahashi
, “
Poly(D-lactic acid) as a rheological modifier of poly(L-lactic acid): Shear and biaxial extensional flow behavior
,”
J. Rheol.
48
,
599
609
(
2004
).
17.
Nasseri
,
S. L.
,
L. E.
Bilston
,
B.
Fasheun
, and
R. I.
Tanner
, “
Modeling the biaxial elongational deformation of soft solids
,”
Rheol. Acta
43
,
68
79
(
2004
).
18.
Nasseri
,
S. L.
,
L. E.
Bilston
, and
R. I.
Tanner
, “
Lubricated squeezing flow: A useful method for measuring the viscoelastic properties of soft tissues
,”
Biorheology
40
,
545
551
(
2003
), see https://content.iospress.com/articles/biorheology/bir275.
19.
Campanella
,
O. H.
, and
M.
Peleg
, “
Squeezing flow viscometry for nonelastic semiliquid foods- theory and applications
,”
Crit. Rev. Food Sci. Nutr.
42
,
241
264
(
2002
).
20.
Song
,
Y.
,
Q.
Zheng
, and
Z.
Wang
, “
Equibiaxial extensional flow of wheat gluten plasticized with glycerol
,”
Food Hydrocoll.
21
,
1290
1295
(
2007
).
21.
Burbidge
,
A. S.
, and
C.
Servais
, “
Squeeze flows of apparently lubricated thin films
,”
J. Non-Newtonian Fluid Mech.
124
,
115
127
(
2004
).
22.
Engmann
,
J.
,
C.
Servais
, and
A. S.
Burbidge
, “
Squeeze flow theory and applications to rheometry: A review
,”
J. Non-Newtonian Fluid Mech.
132
,
1
27
(
2005
).
23.
Kompani
,
M.
, and
D. C.
Venerus
, “
Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. I: Experimental analysis
,”
Rheol. Acta
39
,
444
451
(
2000
).
24.
Venerus
,
D. C.
,
M.
Kompani
, and
B.
Bernstein
, “
Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. Part 2: Flow modeling
,”
Rheol. Acta
39
,
574
582
(
2000
).
25.
Guadarrama-Medina
,
T.
,
T.-Y.
Shiu
, and
D. C.
Venerus
, “
Direct comparisons of equibiaxial elongational viscosity measurements from lubricated squeezing flow (LSF) and the multiaxiale dehnung (MAD) rheometer
,”
Rheol. Acta
48
,
11
17
(
2009
).
26.
Kashyap
,
T.
, and
D. C.
Venerus
, “
Stress relaxation in polymer melts following equibiaxial step strain
,”
Macromolecules
43
,
5874
5880
(
2010
).
27.
Venerus
,
D. C.
, and
M.
Kompani
, “Apparatus for generating generally uniform compression in viscous liquids,” US Patent No. 5,916,599 (1999).
28.
Venerus
,
D. C.
,
T. -Y.
Shiu
,
T.
Kashyap
, and
J.
Hosttetler
, “
Continuous lubricated squeezing flow: A novel technique for equibiaxial elongational viscosity measurements on polymer melts
,”
J. Rheol.
54
,
1083
1095
(
2010
).
29.
Mick
,
R. M.
,
T. -Y.
Shiu
, and
D. C.
Venerus
, “
Equibiaxial elongational viscosity measurements of commercial polymer melts
,”
Polym. Eng. Sci.
55
,
1012
1017
(
2015
).
30.
Venerus
,
D. C.
,
R. M.
Mick
, and
T.
Kashyap
, “
Equibiaxial elongational rheology of entangled polystyrene melts
,”
J. Rheol.
63
,
157
165
(
2019
).
31.
Mick
,
R. M.
, and
D. C.
Venerus
, “
A novel technique for conducting creep experiments in equibiaxial elongation
,”
Rheol. Acta
56
,
591
596
(
2017
).
32.
Haward
,
S. J.
,
F.
Pimenta
,
S.
Varchanis
,
D. W.
Carlson
,
K.
Toda-Peters
,
M. A.
Alves
, and
A. Q.
Shen
, “
Extensional rheometry of mobile fluids. Part I: OUBER, an optimized uniaxial and biaxial extensional rheometer
,”
J. Rheol.
67
,
995
1009
(
2023
).
33.
Haward
,
S. J.
,
J. S.
Varchanis
,
G. H.
McKinley
,
M. A.
Alves
, and
A. Q.
Shen
, “
Extensional rheometry of mobile fluids. Part II: Comparison between the uniaxial, planar, and biaxial extensional rheology of dilute polymer solutions using numerically optimized stagnation point microfluidic devices
,”
J. Rheol.
67
,
1011
1030
(
2023
).
34.
Louhichi
,
A.
,
C.-A.
Charles
,
S.
Arora
,
L.
Bouteiller
,
D.
Vlassopoulos
,
L.
Ramos
, and
C.
Ligoure
, “
Competition between shear and biaxial extensional viscous dissipation in the expansion dynamics of newtonian and rheo-thinning liquid sheets
,”
Phys. Fluids
33
,
073109
(
2021
).
35.
Graham
,
R. S.
,
A. E.
Likhtman
,
T. C.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
1200
(
2003
).
36.
Likhtman
,
A. E.
, and
R. S.
Graham
, “
Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–poly equation
,”
J. Non-Newtonian Fluid Mech.
114
,
1
12
(
2003
).
37.
Andreev
,
M.
,
R. N.
Khaliullin
,
R.
Steenbakkers
, and
J. D.
Schieber
, “
Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions
,”
J. Rheol.
57
,
535
557
(
2013
).
38.
Katzarova
,
M.
,
T.
Kashyap
,
J. D.
Schieber
, and
D. C.
Venerus
, “
Linear viscoelastic behavior of bidisperse polystyrene blends: Experiments and slip-link predictions
,”
Rheol. Acta
57
,
327
338
(
2018
).
39.
Khaliullin
,
R. N.
, and
J. D.
Schieber
, “
Analytic expressions for the statistics of the primitive-path length in entangled polymers
,”
Phys. Rev. Lett.
100
,
188302
(
2008
).
40.
Schieber
,
J. D.
,
J.
Neergaard
, and
S.
Gupta
, “
A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching
,”
J. Rheol.
47
,
213
233
(
2003
).
41.
Steenbakkers
,
R. J.
, M. Andreev, and J. D. Schieber, “
Thermodynamically consistent incorporation of entanglement spatial fluctuations in the slip-link model
,”
Phys. Rev. E
103
(2), 022501 (
2021
).
42.
Steenbakkers
,
R. J.
, and
J. D.
Schieber
, “
Derivation of free energy expressions for tube models from coarse-grained slip-link models
,”
J. Chem. Phys.
137
,
034901
(
2012
).
43.
Schieber
,
J. D.
, and
A.
Córdoba
, “
Nonequilibrium thermodynamics for soft matter made easy(er)
,”
Phys. Fluids
33
,
083103
(
2021
).
44.
Dolata
,
B. E.
, and
P. D.
Olmsted
, “
A thermodynamically consistent constitutive equation describing polymer disentanglement under flow
,”
J. Rheol.
67
,
269
292
(
2023
).
45.
Beris
,
A. N.
, and
B. J.
Edwards
,
Thermodynamics of Flowing Systems with Internal Microstructure
(
Oxford University
,
New York
,
1994
).
46.
Becerra
,
D.
,
A.
Córdoba
, and
J. D.
Schieber
, “
Examination of nonuniversalities in entangled polymer melts during the start-up of steady shear flow
,”
Macromolecules
54
,
8033
8042
(
2021
).
47.
Fetters
,
L.
,
D.
Lohse
, and
R.
Colby
, “Chain dimensions and entanglement spacings,” in Physical Properties of Polymers Handbook (Springer, New York, 2007), pp. 447–454.
48.
Venerus
,
D. C.
, “
Squeeze flows in liquid films bound by porous disks
,”
J. Fluid Mech.
855
,
860
881
(
2018
).
49.
Ethier
,
J. G.
,
A.
Córdoba
, and
J. D.
Schieber
, “
pyDSM: GPU-accelerated rheology predictions for entangled polymers in Python
,”
Comput. Phys. Commun.
290
,
108786
(
2023
).
50.
Khaliullin
,
R. N.
, and
J. D.
Schieber
, “
Analytic expressions for the statistics of the primitive-path length in entangled polymers
,”
Phys. Rev. Lett.
100
,
188302
(
2008
).
51.
Schieber
,
J. D.
, “
Fluctuations in entanglements of polymer liquids
,”
J. Chem. Phys.
118
,
5162
5166
(
2003
).
52.
Andreev
,
M.
, and
J. D.
Schieber
, “
Accessible and quantitative entangled polymer rheology predictions, suitable for complex flow calculations
,”
Macromolecules
48
,
1606
1613
(
2015
).
53.
Schieber
,
J. D.
,
J.
Neergaard
, and
S.
Gupta
, “
A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching
,”
J. Rheol.
47
,
213
233
(
2003
).
54.
Becerra
,
D.
,
A.
Córdoba
,
M.
Katzarova
,
M.
Andreev
,
D. C.
Venerus
, and
J. D.
Schieber
, “
Polymer rheology predictions from first principles using the slip-link model
,”
J. Rheol.
64
,
1035
1043
(
2020
).
55.
Steenbakkers
,
R. J.
,
C.
Tzoumanekas
,
Y.
Li
,
W. K.
Liu
,
M.
Kröger
, and
J. D.
Schieber
, “
Primitive-path statistics of entangled polymers: Mapping multi-chain simulations onto single-chain mean-field models
,”
New J. Phys.
16
,
015027
(
2014
).
56.
Andreev
,
M.
,
H.
Feng
,
L.
Yang
, and
J. D.
Schieber
, “
Universality and speedup in equilibrium and nonlinear rheology predictions of the fixed slip-link model
,”
J. Rheol.
58
,
723
736
(
2014
).
57.
Khaliullin
,
R. N.
, and
J. D.
Schieber
, “
Self-consistent modeling of constraint release in a single-chain mean-field slip-link model
,”
Macromolecules
42
,
7504
7517
(
2009
).
58.
Schieber
,
J. D.
, “
Generic compliance of a temporary network model with sliplinks, chain-length fluctuations, segment-connectivity and constraint release
,”
J. Non-Equilibr. Thermodyn.
28
,
179
188
(
2003
).
59.
Taletskiy
,
K.
,
T. A.
Tervoort
, and
J. D.
Schieber
, “
Predictions of the linear rheology of polydisperse, entangled linear polymer melts by using the discrete slip-link model
,”
J. Rheol.
62
,
1331
1338
(
2018
).
60.
Gloor
,
W. E.
, “
A continuum of molecular weight distributions applicable to linear homopolymers
,”
J. Appl. Polym. Sci.
19
,
273
279
(
1975
).
61.
Gloor
,
W. E.
, “
The numerical evaluation of parameters in distribution functions of polymers from their molecular weight distributions
,”
J. Appl. Polym. Sci.
22
,
1177
1182
(
1978
).
62.
See the supplementary material online for additional mathematical details and figures used to obtain the results presented in the main text.
63.
Boudara
,
V. A.
,
J. D.
Peterson
,
L. G.
Leal
, and
D. J.
Read
, “
Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-double-poly models
,”
J. Rheol.
63
,
71
91
(
2019
).
64.
Des Cloizeaux
,
J.
, “
Double reptation versus simple reptation in polymer melts
,”
Europhys. Lett.
5
,
437
442
(
1988
).
65.
Öttinger
,
H. C.
,
Beyond Equilibrium Thermodynamics
(
John Wiley & Sons
,
New York
,
2005
).
66.
Öttinger
,
H. C.
, and
M.
Grmela
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
,
6633
6655
(
1997
).
67.
Bach
,
A.
,
K.
Almdal
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Elongational viscosity of narrow molar mass distribution polystyrene
,”
Macromolecules
36
,
5174
5179
(
2003
).
68.
Luap
,
C.
,
C.
Müller
,
T.
Schweizer
, and
D. C.
Venerus
, “
Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution
,”
Rheol. Acta
45
,
83
91
(
2005
).
69.
Venerus
,
D. C.
,
S. H.
Zu
, and
H. C.
Öttinger
, “
Measurement of stress and birefringence during the uniaxial elongational of polystyrene melts
,”
J. Rheol.
43
,
795
813
(
1999
).
70.
Barroso
,
V. C.
,
R. J.
Andrade
, and
J. M.
Maia
, “
An experimental study on the criteria for failure of polymer melts in uniaxial extension: The test case of a polyisobutylene melt in different deformation regimes
,”
J. Rheol.
54
,
605
618
(
2010
).
71.
Padmanabhan
,
T.
,
L. J.
Kasehagen
, and
C.
Macosko
, “
Transient extensional viscosity from a rotational shear rheometer using fiber-windup technique
,”
J. Rheol.
40
,
473
481
(
1996
).
72.
Katzarova
,
M.
,
L.
Yang
,
M.
Andreev
,
A.
Córdoba
, and
J. D.
Schieber
, “
Analytic slip-link expressions for universal dynamic modulus predictions of linear monodisperse polymer melts
,”
Rheol. Acta
54
,
169
183
(
2015
).
73.
Meissner
,
J.
,
S.
Stephenson
,
A.
Demarmels
, and
P.
Portman
, “
Multiaxial elongational flows of polymer melts—Classification and experimental realization
,”
J. Non-Newtonian Fluid Mech.
11
,
221
237
(
1982
).
74.
Andreev
,
M.
,
R. N.
Khaliullin
,
R. J.
Steenbakkers
, and
J. D.
Schieber
, “
Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions
,”
J. Rheol.
57
,
535
557
(
2013
).

Supplementary Material

You do not currently have access to this content.