We use nonequilibrium atomistic molecular dynamics simulations of unentangled melts of linear and star oligomer chains ( C 25 H 52) to study the steady-state viscoelastic response under confinement within nanoscale hematite ( α F e 2 O 3 ) channels. We report (i) the negative (positive) first (second) normal stress difference and (ii) the presence of viscoelastic tension at low W i. With the aim of uncovering the molecular mechanism of viscoelasticity, we link these effects to bond alignment such that absorbed chains near the surface can carry the elastic force exerted on the walls, which decays as the chains become more aligned in the flow direction. This alignment is observed to be independent of the film thickness but enhanced as the shear rate increases or the surface attraction weakens.

1.
Nezbeda
,
I.
, and
J.
Škvára
, “
On industrial applications of molecular simulations
,”
Mol. Simul.
47
,
846
856
(
2021
).
2.
Bhushan
,
B.
,
Springer Handbook of Nanotechnology
(
Springer Berlin
,
Heidelberg
,
2017
).
3.
Todd
,
B. D.
, and
P. J.
Daivis
,
Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications
(
Cambridge University Press
,
Cambridge
,
2017
).
4.
Savio
,
D.
,
N.
Fillot
,
P.
Vergne
,
H.
Hetzler
,
W.
Seemann
, and
G. E.
Morales Espejel
, “
A multiscale study on the wall slip effect in a ceramic–steel contact with nanometer-thick lubricant film by a nano-to-elastohydrodynamic lubrication approach
,”
J. Tribol.
137
,
031502
(
2015
).
5.
Roth
,
C. B.
, “
Polymers under nanoconfinement: Where are we now in understanding local property changes?
,”
Chem. Soc. Rev.
50
,
8050
8066
(
2021
).
6.
Zheng
,
X.
,
H.
Zhu
,
B.
Kosasih
, and
A.
Kiet Tieu
, “
A molecular dynamics simulation of boundary lubrication: The effect of n-alkanes chain length and normal load
,”
Wear
301
,
62
69
(
2013
).
7.
Drummond
,
C.
, and
J.
Israelachvili
, “
Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear
,”
Macromolecules
33
,
4910
4920
(
2000
).
8.
Mate
,
C. M.
,
Tribology on the Small Scale a Bottom Up Approach to Friction, Lubrication, and Wear
(
Oxford University Press
,
Oxford
,
2008
).
9.
Yamada
,
S.
, “
General shear-thinning dynamics of confined fluids
,”
Tribol. Lett.
13
,
167
171
(
2002
).
10.
Smith
,
A. M.
,
J. E.
Hallett
, and
S.
Perkin
, “
Solidification and superlubricity with molecular alkane films
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
25418
25423
(
2019
).
11.
Israelachvili
,
J. N.
,
Intermolecular and Surface Forces
(
Elseiver Academic Press
,
Amsterdam
,
2012
).
12.
Derjaguin
,
B.
, and
N.
Churaev
, “
Structural component of disjoining pressure
,”
J. Colloid Interface Sci.
49
,
249
255
(
1974
).
13.
Lifshitz
,
E.
, and
M.
Hamermesh
, “The theory of molecular attractive forces between solids,” in Perspectives in Theoretical Physics (
Elsevier
,
Amsterdam
, 1992).
14.
Karatrantos
,
A.
,
R. J.
Composto
,
K. I.
Winey
,
M.
Kröger
, and
N.
Clarke
, “
Modeling of entangled polymer diffusion in melts and nanocomposites: A review
,”
Polymers
11
,
876
(
2019
).
15.
Morozov
,
A.
, and
S. E.
Spagnolie
, “Introduction to complex fluids,” in Complex Fluids in Biological Systems (Springer, New York, 2014).
16.
Kirby
,
B. J.
,
Micro- and Nanoscale Fluid Mechanics
(
Cambridge University Press
,
Cambridge
,
2012
).
17.
Ahmed
,
H.
, and
L.
Biancofiore
, “
A new approach for modeling viscoelastic thin film lubrication
,”
J. Non-Newtonian Fluid Mech.
292
,
104524
(
2021
).
18.
Gamaniel
,
S.
,
D.
Dini
, and
L.
Biancofiore
, “
The effect of fluid viscoelasticity in lubricated contacts in the presence of cavitation
,”
Tribol. Int.
160
,
107011
(
2021
).
19.
Ahmed
,
H.
, and
L.
Biancofiore
, “
Modeling polymeric lubricants with non-linear stress constitutive relations
,”
J. Non-Newtonian Fluid Mech.
321
,
105123
(
2023
).
20.
Modeling and Simulation of Tribological Problems in Technology, edited by M. Paggi and D. Hills (Springer International, Cham, 2020).
21.
Shaw
,
M. T.
,
Introduction to Polymer Rheology
(
John Wiley & Sons, Inc.
,
New Jersey
,
2011
).
22.
Nafar Sefiddashti
,
M. H.
,
B. J.
Edwards
, and
B.
Khomami
, “
Flow-induced crystallization of a polyethylene liquid above the melting temperature and its nonequilibrium phase diagram
,”
Phys. Rev. Res.
2
,
013035
(
2020
).
23.
Doi
,
M.
, and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
24.
Rudisill
,
J.
, and
P.
Cummings
, “
Non-equilibrium molecular dynamics approach to the rheology of model polymer fluids
,”
Fluid Ph. Equilib.
88
,
99
113
(
1993
).
25.
Holland
,
D. M.
,
M. K.
Borg
,
D. A.
Lockerby
, and
J. M.
Reese
, “
Enhancing nano-scale computational fluid dynamics with molecular pre-simulations: Unsteady problems and design optimisation
,”
Comput. Fluids
115
,
46
53
(
2015
).
26.
Morozov
,
A. N.
, and
W.
van Saarloos
, “
An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows
,”
Phys. Rep.
447
,
112
143
(
2007
).
27.
Carreau
,
P. J.
, “
Rheological equations from molecular network theories
,”
Trans. Soc. Rheol.
16
,
99
127
(
1972
).
28.
Laso
,
M.
, and
H.
Öttinger
, “
Calculation of viscoelastic flow using molecular models: The CONNFFESSIT approach
,”
J. Non-Newtonian Fluid Mech.
47
,
1
20
(
1993
).
29.
Erbaş
,
A.
, and
J.
Paturej
, “
Friction between ring polymer brushes
,”
Soft Matter
11
,
3139
3148
(
2015
).
30.
Semenov
,
A. N.
, “
Rheology of polymer brushes: Rouse model
,”
Langmuir
11
,
3560
3564
(
1995
).
31.
Thompson
,
A. P.
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
32.
Mayo
,
S. L.
,
B. D.
Olafson
, and
W. A.
Goddard
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
,
8897
8909
(
1990
).
33.
Das
,
S. K.
,
M. M.
Sharma
, and
R. S.
Schechter
, “
Solvation force in confined molecular fluids using molecular dynamics simulation
,”
J. Phys. Chem.
100
,
7122
7129
(
1996
).
34.
McCabe
,
C.
,
S.
Cui
,
P. T.
Cummings
,
P. A.
Gordon
, and
R. B.
Saeger
, “
Examining the rheology of 9-octylheptadecane to giga-pascal pressures
,”
J. Chem. Phys.
114
,
1887
1891
(
2001
).
35.
Everaers
,
R.
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
, “
Rheology and microscopic topology of entangled polymeric liquids
,”
Science
303
,
823
826
(
2004
).
36.
Auhl
,
R.
,
R.
Everaers
,
G. S.
Grest
,
K.
Kremer
, and
S. J.
Plimpton
, “
Equilibration of long chain polymer melts in computer simulations
,”
J. Chem. Phys.
119
,
12718
12728
(
2003
).
37.
Callister
,
W. D.
, and
D. G.
Rethwisch
,
Materials Science and Engineering: An Introduction
(
Wiley
,
New Jersey
,
2019
).
38.
Kalathi
,
J. T.
,
S. K.
Kumar
,
M.
Rubinstein
, and
G. S.
Grest
, “
Rouse mode analysis of chain relaxation in homopolymer melts
,”
Macromolecules
47
,
6925
6931
(
2014
).
39.
Doxastakis
,
M.
,
D. N.
Theodorou
,
G.
Fytas
,
F.
Kremer
,
R.
Faller
,
F.
Müller-Plathe
, and
N.
Hadjichristidis
, “
Chain and local dynamics of polyisoprene as probed by experiments and computer simulations
,”
J. Chem. Phys.
119
,
6883
6894
(
2003
).
40.
Harmandaris
,
V. A.
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
, “
Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts
,”
Macromolecules
31
,
7934
7943
(
1998
).
41.
Smith
,
G. D.
,
W.
Paul
,
M.
Monkenbusch
, and
D.
Richter
, “
On the non-gaussianity of chain motion in unentangled polymer melts
,”
J. Chem. Phys.
114
,
4285
4288
(
2001
).
42.
Farago
,
J.
,
H.
Meyer
, and
A. N.
Semenov
, “
Anomalous diffusion of a polymer chain in an unentangled melt
,”
Phys. Rev. Lett.
107
,
178301
(
2011
).
43.
Basconi
,
J. E.
, and
M. R.
Shirts
, “
Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations
,”
J. Chem. Theory Comput.
9
,
2887
2899
(
2013
).
44.
Liu
,
S.
,
S.
Keten
, and
R. M.
Lueptow
, “
Effect of molecular dynamics water models on flux, diffusivity, and ion dynamics for polyamide membrane simulations
,”
J. Membr. Sci.
678
,
121630
(
2023
).
45.
Thomas
,
M.
, and
B.
Corry
, “
Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes
,”
Microfluid. Nanofluid.
18
,
41
47
(
2014
).
46.
Johnson
,
L. C.
, and
F. R.
Phelan
, “
Comparison of friction parametrization from dynamics and material properties for a coarse-grained polymer melt
,”
J. Phys. Chem. B
127
,
7054
7069
(
2023
).
47.
Sablić
,
J.
,
M.
Praprotnik
, and
R.
Delgado-Buscalioni
, “
Open boundary molecular dynamics of sheared star-polymer melts
,”
Soft Matter
12
,
2416
2439
(
2016
).
48.
Ewen
,
J.
,
C.
Gattinoni
,
F.
Thakkar
,
N.
Morgan
,
H.
Spikes
, and
D.
Dini
, “
A comparison of classical force-fields for molecular dynamics simulations of lubricants
,”
Materials
9
,
651
(
2016
).
49.
Hsu
,
H.-P.
, and
K.
Kremer
, “
Static and dynamic properties of large polymer melts in equilibrium
,”
J. Chem. Phys.
144
,
154907
(
2016
).
50.
Ewen
,
J. P.
,
C.
Gattinoni
,
N.
Morgan
,
H. A.
Spikes
, and
D.
Dini
, “
Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces
,”
Langmuir
32
,
4450
4463
(
2016
).
51.
Restrepo
,
S. E.
,
M. C.
van Eijk
, and
J. P.
Ewen
, “
Behaviour of n-alkanes confined between iron oxide surfaces at high pressure and shear rate: A nonequilibrium molecular dynamics study
,”
Tribol. Int.
137
,
420
432
(
2019
).
52.
Jabbarzadeh
,
A.
,
J.
Atkinson
, and
R.
Tanner
, “
The effect of branching on slip and rheological properties of lubricants in molecular dynamics simulation of Couette shear flow
,”
Tribol. Int.
35
,
35
46
(
2002
).
53.
Itoh
,
S.
,
Y.
Ohta
,
K.
Fukuzawa
, and
H.
Zhang
, “
Enhanced viscoelasticity of polyalphaolefins confined and sheared in submicron-to-nanometer-sized gap range and its dependence on shear rate and temperature
,”
Tribol. Int.
120
,
210
217
(
2018
).
54.
Yang
,
J. Z.
,
X.
Wu
, and
X.
Li
, “
A generalized Irving–Kirkwood formula for the calculation of stress in molecular dynamics models
,”
J. Chem. Phys.
137
,
13
(
2012
). https://pubs.aip.org/aip/jcp/article/137/13/134104/191256.
55.
Yang
,
J. Z.
,
X.
Wu
, and
X.
Li
, “
A generalized Irving–Kirkwood formula for the calculation of stress in molecular dynamics models
,”
J. Chem. Phys.
137
,
134104
(
2012
).
56.
Tanner
,
R. I.
,
Engineering Rheology
(
Oxford University Press
,
Oxford
,
2002
).
57.
Tseng
,
H.-C.
, “
A revisitation of generalized Newtonian fluids
,”
J. Rheol.
64
,
493
504
(
2020
).
58.
Deville
,
M. O.
, and
T. B.
Gatski
,
Mathematical Modeling for Complex Fluids and Flows
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
).
59.
Ahmed
,
H.
, and
L.
Biancofiore
, “
A modified viscosity approach for shear thinning lubricants
,”
Phys. Fluids
34
,
103103
(
2022
).
60.
Bair
,
S.
,
C.
McCabe
, and
P. T.
Cummings
, “
Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime
,”
Phys. Rev. Lett.
88
,
058302
(
2002
).
61.
Cui
,
S. T.
,
P. T.
Cummings
,
H. D.
Cochran
,
J. D.
Moore
, and
S. A.
Gupta
, “
Nonequilibrium molecular dynamics simulation of the rheology of linear and branched alkanes
,”
Int. J. Thermophys.
19
,
449
459
(
1998
).
62.
Moore
,
J. D.
,
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
, “
Rheology of lubricant basestocks: A molecular dynamics study of C 30 isomers
,”
J. Chem. Phys.
113
,
8833
8840
(
2000
).
63.
Moore
,
J. D.
,
S. T.
Cui
,
P. T.
Cummings
, and
H. D.
Cochran
, “
Lubricant characterization by molecular simulation
,”
AIChE J.
43
,
3260
3263
(
1997
).
64.
Cui
,
S. T.
,
P. T.
Cummings
, and
H. D.
Cochran
, “
Multiple time step nonequilibrium molecular dynamics simulation of the rheological properties of liquid n-decane
,”
J. Chem. Phys.
104
,
255
262
(
1996
).
65.
Qu
,
G.
,
J. J.
Kwok
, and
Y.
Diao
, “
Flow-directed crystallization for printed electronics
,”
Acc. Chem. Res.
49
,
2756
2764
(
2016
).
66.
Boutaous
,
M.
,
P.
Bourgin
, and
M.
Zinet
, “
Thermally and flow induced crystallization of polymers at low shear rate
,”
J. Non-Newtonian Fluid Mech.
165
,
227
237
(
2010
).
67.
Graham
,
R. S.
, “
Molecular modelling of flow-induced crystallisation in polymers
,”
J. Eng. Math.
71
,
237
251
(
2011
).
68.
Jabbarzadeh
,
A.
, and
R. I.
Tanner
, “
Flow-induced crystallization: Unravelling the effects of shear rate and strain
,”
Macromolecules
43
,
8136
8142
(
2010
).
69.
Ewen
,
J. P.
,
H. A.
Spikes
, and
D.
Dini
, “
Contributions of molecular dynamics simulations to elastohydrodynamic lubrication
,”
Tribol. Lett.
69
,
24
(
2021
).
70.
Ewen
,
J. P.
,
C.
Gattinoni
,
J.
Zhang
,
D. M.
Heyes
,
H. A.
Spikes
, and
D.
Dini
, “
On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction
,”
Phys. Chem. Chem. Phys.
19
,
17883
17894
(
2017
).
71.
Nimura
,
T.
, and
T.
Tsukahara
, “
Viscoelasticity-induced instability in plane Couette flow at very low Reynolds number
,”
Fluids
7
,
241
(
2022
).
72.
Larson
,
R. G.
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth-Heinemann
,
Oxford
,
2019
).
73.
Maklad
,
O.
, and
R.
Poole
, “
A review of the second normal-stress difference; Its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions
,”
J. Non-Newtonian Fluid Mech.
292
,
104522
(
2021
).
74.
Osuji
,
C. O.
, and
D. A.
Weitz
, “
Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system
,”
Soft Matter
4
,
1388
1392
(
2008
).
75.
Montesi
,
A.
,
A. A.
Peña
, and
M.
Pasquali
, “
Vorticity alignment and negative normal stresses in sheared attractive emulsions
,”
Phys. Rev. Lett.
92
,
058303
(
2004
).
76.
de Cagny
,
H. C.
,
B. E.
Vos
,
M.
Vahabi
,
N. A.
Kurniawan
,
M.
Doi
,
G. H.
Koenderink
,
F.
MacKintosh
, and
D.
Bonn
, “
Porosity governs normal stresses in polymer gels
,”
Phys. Rev. Lett.
117
,
217802
(
2016
).
77.
Lin
,
Y.
,
N.
Phan-Thien
, and
B.
Cheong Khoo
, “
Normal stress differences behavior of polymeric particle suspension in shear flow
,”
J. Rheol.
58
,
223
235
(
2014
).
78.
Magda
,
J. J.
,
S. G.
Baek
,
K. L.
DeVries
, and
R. G.
Larson
, “
Shear flows of liquid crystal polymers: Measurements of the second normal stress difference and the Doi molecular theory
,”
Macromolecules
24
,
4460
4468
(
1991
).
79.
Ding
,
J.
, and
Y.
Yang
, “
Brownian dynamics simulation of rodlike polymers under shear flow
,”
Rheol. Acta
33
,
405
418
(
1994
).
80.
Han
,
W.
,
T.
Zhao
, and
X.
Wang
, “
Study of first normal stress difference of poly(p-phenylene terephthalamide) in sulfuric acid
,”
Polymer
57
,
150
156
(
2015
).
81.
Marrucci
,
G.
, and
P. L.
Maffettone
, “
A description of the liquid-crystalline phase of rodlike polymers at high shear rates
,”
Macromolecules
22
,
4076
4082
(
1989
).
82.
Larson
,
R. G.
, “
Arrested tumbling in shearing flows of liquid-crystal polymers
,”
Macromolecules
23
,
3983
3992
(
1990
).
83.
Parisi
,
D.
,
M.
Kaliva
,
S.
Costanzo
,
Q.
Huang
,
P. J.
Lutz
,
J.
Ahn
,
T.
Chang
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Nonlinear rheometry of entangled polymeric rings and ring-linear blends
,”
J. Rheol.
65
,
695
711
(
2021
).
84.
Dlugogorski
,
B. Z.
,
M.
Grmela
, and
P. J.
Carreau
, “
Viscometric functions for FENE and generalized Lennard-Jones dumbbell liquids in Couette flow: Molecular dynamics study
,”
J. Non-Newtonian Fluid Mech.
48
,
303
335
(
1993
).
85.
Thien
,
N. P.
, and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
,
353
365
(
1977
).
86.
Ewen
,
J. P.
,
D. M.
Heyes
, and
D.
Dini
, “
Advances in nonequilibrium molecular dynamics simulations of lubricants and additives
,”
Friction
6
,
349
386
(
2018
).
87.
Cho
,
S.
,
S.
Jeong
,
J. M.
Kim
, and
C.
Baig
, “
Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow
,”
Sci. Rep.
7
,
9004
(
2017
).
88.
Jeong
,
S.
,
S.
Cho
,
J. M.
Kim
, and
C.
Baig
, “
Interfacial molecular structure and dynamics of confined ring polymer melts under shear flow
,”
Macromolecules
51
,
4670
4677
(
2018
).
89.
Jabbarzadeh
,
A.
,
P.
Harrowell
, and
R. I.
Tanner
, “
Very low friction state of a dodecane film confined between mica surfaces
,”
Phys. Rev. Lett.
94
,
126103
(
2005
).
90.
Sgouros
,
A. P.
, and
D. N.
Theodorou
, “
Atomistic simulations of long-chain polyethylene melts flowing past gold surfaces: Structure and wall-slip
,”
Mol. Phys.
118
,
e1706775
(
2020
).
91.
Zhang
,
L.
,
R.
Balasundaram
,
S. H.
Gehrke
, and
S.
Jiang
, “
Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk
,”
J. Chem. Phys.
114
,
6869
6877
(
2001
).
92.
Savio
,
D.
,
N.
Fillot
,
P.
Vergne
, and
M.
Zaccheddu
, “
A model for wall slip prediction of confined n-alkanes: Effect of wall-fluid interaction versus fluid resistance
,”
Tribol. Lett.
46
,
11
22
(
2012
).
93.
Gattinoni
,
C.
,
J. P.
Ewen
, and
D.
Dini
, “
Adsorption of surfactants on α-Fe 2O 3(0001): A density functional theory study
,”
J. Phys. Chem. C
122
,
20817
20826
(
2018
).
94.
Schweizer
,
T.
, “
Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool
,”
Rheol. Acta
41
,
337
344
(
2002
).
95.
He
,
G.-L.
,
R.
Messina
,
H.
Löwen
,
A.
Kiriy
,
V.
Bocharova
, and
M.
Stamm
, “
Shear-induced stretching of adsorbed polymer chains
,”
Soft Matter
5
,
3014
3017
(
2009
).
96.
Raviv
,
U.
,
R.
Tadmor
, and
J.
Klein
, “
Shear and frictional interactions between adsorbed polymer layers in a good solvent
,”
J. Phys. Chem. B
105
,
8125
8134
(
2001
).
97.
Priezjev
,
N. V.
, “
Interfacial friction between semiflexible polymers and crystalline surfaces
,”
J. Chem. Phys.
136
,
224702
(
2012
).
98.
Granick
,
S.
, and
K.
Binder
,
Polymers in Confined Environments
(
Springer
,
Berlin
,
2011
).
99.
Kirk
,
J.
,
M.
Kröger
, and
P.
Ilg
, “
Surface disentanglement and slip in a polymer melt: A molecular dynamics study
,”
Macromolecules
51
,
8996
9010
(
2018
).
100.
Tsige
,
M.
, and
S. S.
Patnaik
, “
An all-atom simulation study of the ordering of liquid squalane near a solid surface
,”
Chem. Phys. Lett.
457
,
357
361
(
2008
).
101.
Yasuda
,
S.
, and
R.
Yamamoto
, “
Synchronized molecular-dynamics simulation via macroscopic heat and momentum transfer: An application to polymer lubrication
,”
Phys. Rev. X
4
,
041011
(
2014
).
102.
Cunha
,
M. A. G.
,
P. D.
Olmsted
, and
M. O.
Robbins
, “
Probing the nonequilibrium dynamics of stress, orientation, and entanglements in polymer melts with orthogonal interrupted shear simulations
,”
J. Rheol.
66
,
619
637
(
2022
).
103.
See supplementary material online for the following: Our shear simulations show no exchange between the surface-absorbed and the free chains. The former chains exhibit a static behavior that is distinctly separate from the free chains, as depicted in the supplementary movie.
104.
Arnold
,
A.
,
B.
Bozorgui
,
D.
Frenkel
,
B.-Y.
Ha
, and
S.
Jun
, “
Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement
,”
J. Chem. Phys.
127
,
164903
(
2007
).
105.
O’Connor
,
T. C.
,
N. J.
Alvarez
, and
M. O.
Robbins
, “
Relating chain conformations to extensional stress in entangled polymer melts
,”
Phys. Rev. Lett.
121
,
047801
(
2018
).
106.
Xie
,
H.-Q.
, and
C.-H.
Chang
, “
Chemical potential formalism for polymer entropic forces
,”
Commun. Phys.
2
,
24
(
2019
).
107.
Bernardi
,
S.
,
B. D.
Todd
, and
D. J.
Searles
, “
Thermostating highly confined fluids
,”
J. Chem. Phys.
132
,
244706
(
2010
).
108.
Ta
,
D. T.
,
A. K.
Tieu
,
H. T.
Zhu
, and
B.
Kosasih
, “
Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure
,”
J. Chem. Phys.
143
,
164702
(
2015
).
109.
Kanhaiya
,
K.
,
S.
Kim
,
W.
Im
, and
H.
Heinz
, “
Accurate simulation of surfaces and interfaces of ten FCC metals and steel using Lennard-Jones potentials
,”
npj Comput. Mater.
7
,
17
(
2021
).
110.
Napolitano
,
S.
, “
Irreversible adsorption of polymer melts and nanoconfinement effects
,”
Soft Matter
16
,
5348
5365
(
2020
).
111.
Krim
,
J.
, “
Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films
,”
Adv. Phys.
61
,
155
323
(
2012
).
112.
Apóstolo
,
R. F.
,
G.
Tsagkaropoulou
, and
P. J.
Camp
, “
Molecular adsorption, self-assembly, and friction in lubricants
,”
J. Mol. Liq.
277
,
606
612
(
2019
).
113.
Hossain
,
D.
,
M.
Tschopp
,
D.
Ward
,
J.
Bouvard
,
P.
Wang
, and
M.
Horstemeyer
, “
Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene
,”
Polymer
51
,
6071
6083
(
2010
).
114.
Bao
,
Q.
,
Z.
Yang
, and
Z.
Lu
, “
Molecular dynamics simulation of amorphous polyethylene (PE) under cyclic tensile-compressive loading below the glass transition temperature
,”
Polymer
186
,
121968
(
2020
).
115.
Rukmani
,
S. J.
,
G.
Kupgan
,
D. M.
Anstine
, and
C. M.
Colina
, “
A molecular dynamics study of water-soluble polymers: Analysis of force fields from atomistic simulations
,”
Mol. Simul.
45
,
310
321
(
2018
).
116.
Konishi
,
M.
, and
H.
Washizu
, “
Understanding the effect of the base oil on the physical adsorption process of organic additives using molecular dynamics
,”
Tribol. Int.
149
,
105568
(
2020
).
117.
Kajinami
,
N.
, and
M.
Matsumoto
, “
Polymer brush in articular cartilage lubrication: Nanoscale modelling and simulation
,”
Biophys. Physicobiol.
16
,
466
472
(
2019
).
118.
Lin
,
L.
, and
M. A.
Kedzierski
, “
Density and viscosity of a polyol ester lubricant: Measurement and molecular dynamics simulation
,”
Int. J. Refrig.
118
,
188
201
(
2020
).
119.
Gartner
,
T. E.
, and
A.
Jayaraman
, “
Modeling and simulations of polymers: A roadmap
,”
Macromolecules
52
,
755
786
(
2019
).
120.
Ramos
,
J.
,
J.
Vega
, and
J.
Martínez-Salazar
, “
Predicting experimental results for polyethylene by computer simulation
,”
Eur. Polym. J.
99
,
298
331
(
2018
).
121.
Cai
,
M.
,
X.
He
,
Z.
Liu
, and
B.
Liu
, “
Unraveling the influential mechanism of short-chain branching on the crystallization of trimodal polyethylene by molecular dynamics simulation
,”
Phys. Chem. Chem. Phys.
25
,
17912
17922
(
2023
).
122.
Albina
,
J.-M.
,
A.
Kubo
,
Y.
Shiihara
, and
Y.
Umeno
, “
Coarse-grained molecular dynamics simulations of boundary lubrication on nanostructured metal surfaces
,”
Tribol. Lett.
68
,
49
(
2020
).
123.
Halverson
,
J. D.
,
G. S.
Grest
,
A. Y.
Grosberg
, and
K.
Kremer
, “
Rheology of ring polymer melts: From linear contaminants to ring-linear blends
,”
Phys. Rev. Lett.
108
,
038301
(
2012
).
124.
Ewen
,
J.
, and
S. E.
Restrepo
, “Je1314/lammps_builder,”
Zenodo
(2017).
125.
Ewen
,
J. P.
,
S.
Echeverri Restrepo
,
N.
Morgan
, and
D.
Dini
, “
Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness
,”
Tribol. Int.
107
,
264
273
(
2017
).
126.
Patiño
,
C. M.
,
L.
Alzate-Vargas
,
C.
Li
,
B. P.
Haley
, and
A.
Strachan
, “Lammps data-file generator,”
nanoHUB
(2017).
127.
Stukowski
,
A.
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
128.
Vlachopoulos
,
J.
, and
N.
Polychronopoulos
, “Basic concepts in polymer melt rheology and their importance in processing,” in Applied Polymer Rheology (John Wiley & Sons, Inc., New Jersey, 2011).
129.
Morciano
,
M.
,
M.
Fasano
,
A.
Nold
,
C.
Braga
,
P.
Yatsyshin
,
D. N.
Sibley
,
B. D.
Goddard
,
E.
Chiavazzo
,
P.
Asinari
, and
S.
Kalliadasis
, “
Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid-liquid interfaces
,”
J. Chem. Phys.
146
,
244507
(
2017
).
130.
Graham
,
R. S.
, “
Understanding flow-induced crystallization in polymers: A perspective on the role of molecular simulations
,”
J. Rheol.
63
,
203
214
(
2019
).
131.
Jolley
,
K.
, and
R. S.
Graham
, “
Flow-induced nucleation in polymer melts: A study of the GO model for pure and bimodal blends, under shear and extensional flow
,”
Rheol. Acta
52
,
271
286
(
2012
).

Supplementary Material

You do not currently have access to this content.