In this study, a highly crystallizable and an amorphous polylactide (i.e., cPLA and aPLA) with, respectively, low (0.5 mol. %) and high (12 mol. %) d-lactic acid contents and similar molecular weights were melt compounded with two different multifunctional epoxy-based Joncryl chain extenders (CEs, i.e., ADR 4400 and 4468) at 190 °C. Reactivity of Joncryl grades with aPLA was also explored at melt processing temperatures of 150, 170, and 210 °C. Small amplitude oscillatory shear rheological analysis was conducted to understand the extent of the Joncryl reaction with PLA molecules, and the results were confirmed with molecular weight determination using gel permeation chromatography. Extensional viscosity of the processed samples was also compared to control their strain hardening behavior. Results showed that the Joncryl reaction with cPLA and aPLA differs in terms of preference for chain extension or branching, indicating that molecular regularity affected the interactions with both Joncryl grades during reactive melt processing. Moreover, although the increase in processing temperature accelerated PLA degradation, it noticeably increased the reactivity of both Joncryl grades with aPLA. In all cases, ADR 4468 was more reactive in molecular chain extension/branching due to its higher functionality than ADR 4400. Differential scanning calorimetry results also revealed that the crystallization of cPLA was differently affected by the change in the Joncryl content and type.

1.
Gironi
,
F.
, and
V.
Piemonte
, “
Bioplastics and petroleum-based plastics: Strengths and weaknesses
,”
Energy Sources, Part A
33
(
21
),
1949
1959
(
2011
).
2.
Tokiwa
,
Y.
, and
B. P.
Calabia
, “
Biodegradability and biodegradation of polyesters
,”
J. Polym. Environ.
15
(
4
),
259
267
(
2007
).
3.
Dorgan
,
J. R.
,
H. J.
Lehermeier
,
L.-I.
Palade
, and
J.
Cicero
, “
Polylactides: Properties and prospects of an environmentally benign plastic from renewable resources
,”
Macromol. Symp.
175
(
1
),
55
66
(
2001
).
4.
Garlotta
,
D.
, “
A literature review of poly (lactic acid)
,”
J. Polym. Environ.
9
(
2
),
63
84
(
2001
).
5.
Auras
,
R.
,
B.
Harte
, and
S.
Selke
, “
An overview of polylactides as packaging materials
,”
Macromol. Biosci.
4
(
9
),
835
864
(
2004
).
6.
Palade
,
L.-I.
,
H. J.
Lehermeier
, and
J. R.
Dorgan
, “
Melt rheology of high L-content poly(lactic acid)
,”
Macromolecules
34
(
5
),
1384
1390
(
2001
).
7.
Nofar
,
M.
,
R.
Salehiyan
, and
S.
Sinha Ray
, “
Rheology of poly (lactic acid)-based systems
,”
Polym. Rev.
59
(
3
),
465
509
(
2019
).
8.
Lim
,
L.-T.
,
R.
Auras
, and
M.
Rubino
, “
Processing technologies for poly(lactic acid)
,”
Prog. Polym. Sci.
33
(
8
),
820
852
(
2008
).
9.
Celli
,
A.
, and
M.
Scandola
, “
Thermal properties and physical ageing of poly (L-lactic acid)
,”
Polymer
33
(
13
),
2699
2703
(
1992
).
10.
Dorgan
,
J. R.
,
H.
Lehermeier
, and
M.
Mang
, “
Thermal and rheological properties of commercial-grade poly(lactic acid)s
,”
J. Polym. Environ.
8
(
1
),
1
9
(
2000
).
11.
Li
,
H.
, and
M. A.
Huneault
, “
Effect of nucleation and plasticization on the crystallization of poly(lactic acid)
,”
Polymer
48
(
23
),
6855
6866
(
2007
).
12.
Saeidlou
,
S.
,
M. A.
Huneault
,
H.
Li
, and
C. B.
Park
, “
Poly(lactic acid) crystallization
,”
Prog. Polym. Sci.
37
(
12
),
1657
1677
(
2012
).
13.
Vatansever
,
E.
,
D.
Arslan
, and
M.
Nofar
, “
Polylactide cellulose-based nanocomposites
,”
Int. J. Biol. Macromol.
137
,
912
938
(
2019
).
14.
Özdemir
,
B.
, and
M.
Nofar
, “
Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCS in PLA through rheological analysis
,”
Carbohydr. Polym.
268
,
118243
(
2021
).
15.
Al-Itry
,
R.
,
K.
Lamnawar
, and
A.
Maazouz
, “
Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends
,”
Rheol. Acta
53
(
7
),
501
517
(
2014
).
16.
Nofar
,
M.
,
H.
Oguz
, and
D.
Ovalı
, “
Effects of the matrix crystallinity, dispersed phase, and processing type on the morphological, thermal, and mechanical properties of polylactide-based binary blends with poly[(butylene adipate)-co-terephthalate] and poly[(butylene succinate)-co-adipate]
,”
J. Appl. Polym. Sci.
136
(
23
),
47636
(
2019
).
17.
Dorgan
,
J. R.
,
J. S.
Williams
, and
D. N.
Lewis
, “
Melt rheology of poly(lactic acid): entanglement and chain architecture effects
,”
J. Rheol.
43
(
5
),
1141
1155
(
1999
).
18.
McKee
,
M. G.
,
S.
Unal
,
G. L.
Wilkes
, and
T. E.
Long
, “
Branched polyesters: Recent advances in synthesis and performance
,”
Prog. Polym. Sci.
30
(
5
),
507
539
(
2005
).
19.
Michalski
,
A.
,
M.
Brzezinski
,
G.
Lapienis
, and
T.
Biela
, “
Star-shaped and branched polylactides: Synthesis, characterization, and properties
,”
Prog. Polym. Sci.
89
,
159
212
(
2019
).
20.
Standau
,
T.
,
C.
Zhao
,
S.
Murillo Castellón
,
C.
Bonten
, and
V.
Altstädt
, “
Chemical modification and foam processing of polylactide (PLA)
,”
Polymers
11
(
2
),
306
(
2019
).
21.
Standau
,
T.
,
M.
Nofar
,
D.
Dörr
,
H.
Ruckdäschel
, and
V.
Altstädt
, “
A review on multifunctional epoxy-based Joncryl® ADR chain extended thermoplastics
,”
Polym. Rev.
62
,
1
55
(
2021
).
22.
Mihai
,
M.
,
M. A.
Huneault
, and
B. D.
Favis
, “
Rheology and extrusion foaming of chain-branched poly(lactic acid)
,”
Polym. Eng. Sci.
50
(
3
),
629
642
(
2010
).
23.
Corre
,
Y.-M.
,
J.
Duchet
,
J.
Reignier
, and
A.
Maazouz
, “
Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains
,”
Rheol. Acta
50
(
7-8
),
613
629
(
2011
).
24.
Corre
,
Y.-M.
,
A.
Maazouz
,
J.
Duchet
, and
J.
Reignier
, “
Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure
,”
J. Supercrit. Fluids
58
(
1
),
177
188
(
2011
).
25.
Meng
,
Q.
,
M.-C.
Heuzey
, and
P. J.
Carreau
, “
Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction
,”
Polym. Degrad. Stab.
97
(
10
),
2010
2020
(
2012
).
26.
Najafi
,
N.
,
M. C.
Heuzey
,
P. J.
Carreau
, and
P. M.
Wood-Adams
, “
Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders
,”
Polym. Degrad. Stab.
97
(
4
),
554
565
(
2012
).
27.
Wang
,
J.
,
W.
Zhu
,
H.
Zhang
, and
C. B.
Park
, “
Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity
,”
Chem. Eng. Sci.
75
,
390
399
(
2012
).
28.
Cailloux
,
J.
,
O. O.
Santana
,
E.
Franco-Urquiza
,
J. J.
Bou
,
F.
Carrasco
,
J.
Gamez-Perez
, and
M. L.
Maspoch
, “
Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis
,”
Express Polym. Lett.
7
(
3
),
304
318
(
2013
).
29.
Cailloux
,
J.
,
O. O.
Santana
,
M. L.
Maspoch
,
J. J.
Bou
, and
F.
Carrasco
, “
Using viscoelastic properties to quantitatively estimate the amount of modified poly(lactic acid) chains through reactive extrusion
,”
J. Rheol.
59
(
5
),
1191
1227
(
2015
).
30.
Najafi
,
N.
,
M.-C.
Heuzey
,
P. J.
Carreau
,
D.
Therriault
, and
C. B.
Park
, “
Rheological and foaming behavior of linear and branched polylactides
,”
Rheol. Acta
53
(
10-11
),
779
790
(
2014
).
31.
Tuna
,
B.
, and
G.
Ozkoc
, “
Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly(lactic acid)
,”
J. Polym. Environ.
25
(
4
),
983
993
(
2017
).
32.
Göttermann
,
S.
,
T.
Standau
,
S.
Weinmann
,
V.
Altstädt
, and
C.
Bonten
, “
Effect of chemical modification on the thermal and rheological properties of polylactide
,”
Polym. Eng. Sci.
57
,
1242
1251
(
2017
).
33.
Gu
,
L.
,
Y.
Xu
,
G. W.
Fahnhorst
, and
C. W.
Macosko
, “
Star vs long chain branching of poly(lactic acid) with multifunctional aziridine
,”
J. Rheol.
61
(
4
),
785
796
(
2017
).
34.
Yahyaee
,
N.
,
A.
Javadi
,
H.
Garmabi
, and
A.
Khaki
, “
Effect of two-step chain extension using Joncryl and PMDA on the rheological properties of poly (lactic acid)
,”
Macromol. Mater. Eng.
305
(
2
),
1900423
(
2020
).
35.
Standau
,
T.
,
S. M.
Castellón
,
A.
Delavoie
,
C.
Bonten
, and
V.
Altstädt
, “
Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion
,”
e-Polymers
19
(
1
),
297
304
(
2019
).
36.
Nofar
,
M.
,
W.
Zhu
,
C. B.
Park
, and
J.
Randall
, “
Crystallization kinetics of linear and long-chain-branched polylactide
,”
Ind. Eng. Chem. Res.
50
(
24
),
13789
13798
(
2011
).
37.
Limsukon
,
W.
,
R.
Auras
, and
S.
Selke
, “
Hydrolytic degradation and lifetime prediction of poly(lactic acid) modified with a multifunctional epoxy-based chain extender
,”
Polym. Test.
80
,
106108
(
2019
).
38.
Randall
,
J. R.
,
K.
Cink
, and
J. C.
Smith
, Branching polylactide by reacting OH or COOH polylactide with epoxide acrylate (co)polymer, US Patent No. US7,566,753B2 (2005).
39.
Nangeroni
,
J.
, and
J. R.
Randall
, Extruded foams made with polylactides that have high molecular weights and high intrinsic viscosities, US Patent No. US8,722,754B2 (2009).
40.
Iñiguez-Franco
,
F.
,
R.
Auras
,
J.
Ahmed
,
S.
Selke
,
M.
Rubino
,
K.
Dolan
, and
H.
Soto-Valdez
, “
Control of hydrolytic degradation of poly(lactic acid) by incorporation of chain extender: From bulk to surface erosion
,”
Polym. Test.
67
,
190
196
(
2018
).
41.
Bigg
,
D. M.
, “
Polylactide copolymers: Effect of copolymer ratio and end capping on their properties
,”
Adv. Polym. Technol.
24
(
2
),
69
82
(
2005
).
42.
Atalay
,
S. E.
,
B.
Bezci
,
B.
Özdemir
,
Y. A.
Göksu
,
A.
Ghanbari
,
A.
Jalali
, and
M.
Nofar
, “
Thermal and environmentally induced degradation behaviors of amorphous and semicrystalline PLAs through rheological analysis
,”
J. Polym. Environ.
29
(
10
),
3412
3426
(
2021
).
43.
Nofar
,
M.
,
Multiphase Polylactide Blends Towards a Sustainable and Green Environment
(
Elsevier
, Amsterdam, The Netherlands,
2021
).
44.
Jalali
,
A.
,
M. A.
Huneault
,
M.
Nofar
,
P. C.
Lee
, and
C. B.
Park
, “
Effect of branching on flow-induced crystallization of poly (lactic acid)
,”
Eur. Polym. J.
119
,
410
420
(
2019
).
45.
Carreau
,
P. J.
,
D. D.
Kee
, and
R. P.
Chhabra
,
Rheology of Polymeric Systems: Principles and Applications
(
Hanser
, Munich, Germany,
2021
).
46.
Aho
,
J.
,
J. P.
Boetker
,
S.
Baldursdottir
, and
J.
Rantanen
, “
Rheology as a tool for evaluation of melt processability of innovative dosage forms
,”
Int. J. Pharm.
494
(
2
),
623
642
(
2015
).
47.
López-Barrón
,
C. R.
,
J. A.
Throckmorton
, and
T.-P.
Lin
, “
Extensional rheology and flow-induced crystal alignment in polypropylene ionomers
,”
J. Rheol.
66
(
3
),
657
669
(
2022
).
48.
Fischer
,
E. W.
,
H. J.
Sterzel
, and
G.
Wegner
, “
Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions
,”
Kolloid-Z. Z. Polym.
251
(
11
),
980
990
(
1973
).
49.
Heymans
,
N.
, “
A novel look at models for polymer entanglement
,”
Macromolecules
33
(
11
),
4226
4234
(
2000
).
50.
Dunstan
,
D. E.
, “
The viscosity-radius relationship for concentrated polymer solutions
,”
Sci. Rep.
9
(
1
),
543
(
2019
).
51.
Carrillo
,
J.-M. Y.
,
W.-R.
Chen
,
Z.
Wang
,
B. G.
Sumpter
, and
Y.
Wang
, “
Chain conformation of polymer melts with associating groups
,”
J. Phys. Commun.
3
(
3
),
035007
(
2019
).
52.
Dorgan
,
J. R.
,
J.
Janzen
,
M. P.
Clayton
,
S. B.
Hait
, and
D. M.
Knauss
, “
Melt rheology of variable L-content poly(lactic acid)
,”
J. Rheol.
49
(
3
),
607
619
(
2005
).
53.
Othman
,
N.
,
A.
Acosta-Ramírez
,
P.
Mehrkhodavandi
,
J. R.
Dorgan
, and
S. G.
Hatzikiriakos
, “
Solution and melt viscoelastic properties of controlled microstructure poly(lactide)
,”
J. Rheol.
55
(
5
),
987
1005
(
2011
).
54.
Narmon
,
A. S.
,
A.
Dewaele
,
K.
Bruyninckx
,
B. F.
Sels
,
P.
Van Puyvelde
, and
M.
Dusselier
, “
Boosting PLA melt strength by controlling the chirality of co-monomer incorporation
,”
Chem. Sci.
12
(
15
),
5672
5681
(
2021
).
55.
Al-Itry
,
R.
,
K.
Lamnawar
, and
A.
Maazouz
, “
Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties
,”
Eur. Polym. J.
58
,
90
102
(
2014
).
56.
Stanic
,
S.
,
G.
Gottlieb
,
T.
Koch
,
L.
Göpperl
,
K.
Schmid
,
S.
Knaus
, and
V.-M.
Archodoulaki
, “
Influence of different types of peroxides on the long-chain branching of PP via reactive extrusion
,”
Polymers
12
(
4
),
886
(
2020
).
57.
Mohamed Zin
,
M. R.
,
A.
Mahendrasingam
,
C.
Konkel
, and
T.
Narayanan
, “
Effect of D-isomer content on strain-induced crystallization behaviour of poly(lactic acid) polymer under high speed uniaxial drawing
,”
Polymer
216
,
123422
(
2021
).
58.
See supplementary material online for the reaction of the Joncryl chain extender with PLA molecules is confirmed through Fourier-transform infrared spectroscopy (FTIR) analysis. The storage and loss moduli data of cPLA and aPLA processed samples versus frequency as well as the corresponding Cole–Cole and Van Gurp–Palmen model plots are also separately presented.

Supplementary Material

You do not currently have access to this content.