Discontinuous shear thickening (DST) is associated with a sharp rise in a suspension’s viscosity with increasing applied shear rate or stress. Key signatures of DST, highlighted in recent studies, are the very large fluctuations of the measured stress as the suspension thickens with increasing rate. A clear link between microstructural development and the dramatic increase in stress fluctuations has not been established yet. To identify the microstructural underpinnings of this behavior, we perform simulations of sheared dense suspensions. Through an analysis of the particle contact network, we identify a subset of constrained particles that contributes directly to the rapid rise in viscosity and large stress fluctuations. Indeed, both phenomena can be explained by the growth and percolation of constrained particle networks—in direct analogy to rigidity percolation. A finite size scaling analysis confirms this to be a percolation phenomenon and allows us to estimate the critical exponents. Our findings reveal the specific microstructural self-organization transition that underlies DST.

1.
Guazzelli
,
E.
, and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University
,
New York, NY
,
2012
).
2.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
,
New York, NY
,
2011
).
3.
Hoffman
,
R. L.
, “
Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability
,”
Trans. Soc. Rheol.
16
,
155
173
(
1972
).
4.
Leighton
,
D.
, and
A.
Acrivos
, “
The shear-induced migration of particles in concentrated suspensions
,”
J. Fluid Mech.
181
,
415
439
(
1987
).
5.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
,
1
5
(
2016
).
6.
Lootens
,
D.
,
H.
Van Damme
, and
P.
Hébraud
, “
Giant stress fluctuations at the jamming transition
,”
Phys. Rev. Lett.
90
,
178301
(
2003
).
7.
Hermes
,
M.
,
B. M.
Guy
,
W. C. K.
Poon
,
G.
Poy
,
M. E.
Cates
, and
M.
Wyart
, “
Unsteady flow and particle migration in dense, non-Brownian suspensions
,”
J. Rheol.
60
,
905
916
(
2016
).
8.
Saint-Michel
,
B.
,
T.
Gibaud
, and
S.
Manneville
, “
Uncovering instabilities in the spatiotemporal dynamics of a shear-thickening cornstarch suspension
,”
Phys. Rev. X
8
,
031006
(
2018
).
9.
Rathee
,
V.
,
D. L.
Blair
, and
J. S.
Urbach
, “
Localized stress fluctuations drive shear thickening in dense suspensions
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
8740
8745
(
2017
).
10.
Xu
,
Q.
,
A.
Singh
, and
H. M.
Jaeger
, “
Stress fluctuations and shear thickening in dense granular suspensions
,”
J. Rheol.
64
,
321
328
(
2020
).
11.
Seto
,
R.
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
1
5
(
2013
).
12.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
13.
Wyart
,
M.
, and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
1
5
(
2014
).
14.
Lin
,
N. Y. C.
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
15.
Lootens
,
D.
,
P.
Hébraud
,
E.
Lécolier
, and
H.
Van Damme
, “
Gelation, shear-thinning and shear-thickening in cement slurries
,”
Oil Gas Sci. Technol.
59
,
31
40
(
2004
).
16.
Morris
,
J. F.
, “
Lubricated-to-frictional shear thickening scenario in dense suspensions
,”
Phys. Rev. Fluids
3
,
110508
(
2018
).
17.
Jamali
,
S.
, and
J. F.
Brady
, “
Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics
,”
Phys. Rev. Lett.
123
,
138002
(
2019
).
18.
Wang
,
M.
,
S.
Jamali
, and
J. F.
Brady
, “
A hydrodynamic model for discontinuous shear-thickening in dense suspensions
,”
J. Rheol.
64
,
379
394
(
2020
).
19.
Ong
,
E. Y. X.
,
M.
Ramaswamy
,
R.
Niu
,
N. Y. C.
Lin
,
A.
Shetty
,
R. N.
Zia
,
G. H.
McKinley
, and
I.
Cohen
, “
Stress decomposition in LAOS of dense colloidal suspensions
,”
J. Rheol.
64
,
343
351
(
2020
).
20.
More
,
R. V.
, and
A. M.
Ardekani
, “
Effect of roughness on the rheology of concentrated non-Brownian suspensions: A numerical study
,”
J. Rheol.
64
,
67
80
(
2020
).
21.
Nabizadeh
,
M.
,
A.
Singh
, and
S.
Jamali
, “
Structure and dynamics of force clusters and networks in shear thickening suspensions
,”
Phys. Rev. Lett.
129
,
068001
(
2022
).
22.
Sedes
,
O.
,
A.
Singh
, and
J. F.
Morris
, “
Fluctuations at the onset of discontinuous shear thickening in a suspension
,”
J. Rheol.
64
,
309
319
(
2020
).
23.
Ramaswamy
,
M.
,
I.
Griniasty
,
D. B.
Liarte
,
A.
Shetty
,
E.
Katifori
,
E.
Del Gado
,
J. P.
Sethna
,
B.
Chakraborty
, and
I.
Cohen
, “
Universal scaling of shear thickening transitions
,”
J. Rheol.
67
,
1189
1197
(
2023
).
24.
Seto
,
R.
,
A.
Singh
,
B.
Chakraborty
,
M. M.
Denn
, and
J. F.
Morris
, “
Shear jamming and fragility in dense suspensions
,”
Granular Matter
21
,
1
8
(
2019
).
25.
Sedes
,
O.
,
H. A.
Makse
,
B.
Chakraborty
, and
J. F.
Morris
, “
k-core analysis of shear-thickening suspensions
,”
Phys. Rev. Fluids
7
,
024304
(
2022
).
26.
M. van der Naald, A. Singh, T. T. Eid, et al., “
Minimally rigid clusters in dense suspension flow
,”
Nat. Phys.
(published online, 2024).
27.
Thomas
,
J. E.
,
K.
Ramola
,
A.
Singh
,
R.
Mari
,
J. F.
Morris
, and
B.
Chakraborty
, “
Microscopic origin of frictional rheology in dense suspensions: Correlations in force space
,”
Phys. Rev. Lett.
121
,
128002
(
2018
).
28.
Edens
,
L. E.
,
E. G.
Alvarado
,
A.
Singh
,
J. F.
Morris
,
G. K.
Schenter
,
J.
Chun
, and
A. E.
Clark
, “
Shear stress dependence of force networks in 3D dense suspensions
,”
Soft Matter
17
,
7476
7486
(
2021
).
29.
Gameiro
,
M.
,
A.
Singh
,
L.
Kondic
,
K.
Mischaikow
, and
J. F.
Morris
, “
Interaction network analysis in shear thickening suspensions
,”
Phys. Rev. Fluids
5
,
034307
(
2020
).
30.
Lin
,
N. Y. C.
,
C.
Ness
,
M. E.
Cates
,
J.
Sun
, and
I.
Cohen
, “
Tunable shear thickening in suspensions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
10774
(
2016
).
31.
Xue
,
W.
, and
G. S.
Grest
, “
Shear-induced alignment of colloidal particles in the presence of a shear flow
,”
Phys. Rev. Lett.
64
,
419
(
1990
).
32.
Bender
,
J.
, and
N. J.
Wagner
, “
Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,”
J. Rheol.
40
,
899
916
(
1996
).
33.
Kulkarni
,
S. D.
, and
J. F.
Morris
, “
Ordering transition and structural evolution under shear in Brownian suspensions
,”
J. Rheol.
53
,
417
439
(
2009
).
34.
Goyal
,
A.
,
E.
Del Gado
,
S. Z.
Jones
, and
N. S.
Martys
, “
Ordered domains in sheared dense suspensions: The link to viscosity and the disruptive effect of friction
,”
J. Rheol.
66
,
1055
1065
(
2022
).
35.
Thorpe
,
M.
,
D.
Jacobs
,
M.
Chubynsky
, and
J.
Phillips
, “
Self-organization in network glasses
,”
J. Non-Cryst. Solids
266
,
859
866
(
2000
).
36.
Liarte
,
D. B.
,
X.
Mao
,
O.
Stenull
, and
T. C.
Lubensky
, “
Jamming as a multicritical point
,”
Phys. Rev. Lett.
122
,
128006
(
2019
).
37.
Liu
,
K.
,
S.
Henkes
, and
J. M.
Schwarz
, “
Frictional rigidity percolation: A new universality class and its superuniversal connections through minimal rigidity proliferation
,”
Phys. Rev. X
9
,
021006
(
2019
).
38.
Stauffer
,
D.
, and
A.
Aharony
,
Introduction to Percolation Theory
(
CRC
,
New York, NY
,
2018
).
39.
Mari
,
R.
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
15326
15330
(
2015
).
40.
Singh
,
A.
,
R.
Mari
,
M. M.
Denn
, and
J. F.
Morris
, “
A constitutive model for simple shear of dense frictional suspensions
,”
J. Rheol.
62
,
457
468
(
2018
).
41.
Plimpton
,
S.
, “
Fast parallel algorithms for short – range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
42.
Singh
,
A.
,
C.
Ness
,
R.
Seto
,
J. J.
De Pablo
, and
H. M.
Jaeger
, “
Shear thickening and jamming of dense suspensions: The “roll” of friction
,”
Phys. Rev. Lett.
124
,
248005
(
2020
).
43.
Feys
,
D.
,
G.
De Schutter
,
S.
Fataei
,
N. S.
Martys
, and
V.
Mechtcherine
, “
Pumping of concrete: Understanding a common placement method with lots of challenges
,”
Cem. Concr. Res.
154
,
106720
(
2022
).
44.
Ball
,
R. C.
, and
J. R.
Melrose
, “
A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces
,”
Phys. A
247
,
444
472
(
1997
).
45.
Morris
,
J. F.
, “
Lubricated-to-frictional shear thickening scenario in dense suspensions
,”
Phys. Rev. Fluids
3
,
1
16
(
2018
).
46.
Lee
,
Y.-F.
,
Y.
Luo
,
S. C.
Brown
, and
N. J.
Wagner
, “
Experimental test of a frictional contact model for shear thickening in concentrated colloidal suspensions
,”
J. Rheol.
64
,
267
282
(
2020
).
47.
Singh
,
A.
,
C.
Ness
,
R.
Seto
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Shear thickening and jamming of dense suspensions: The “roll” of friction
,”
Phys. Rev. Lett.
124
,
248005
(
2020
).
48.
Thompson
,
A. P.
,
S. J.
Plimpton
, and
W.
Mattson
, “
General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,”
J. Chem. Phys.
131
,
1
6
(
2009
).
49.
Hoshen
,
J.
, and
R.
Kopelman
, “
Percolation and cluster distribution. I. cluster multiple labeling technique and critical concentration algorithm
,”
Phys. Rev. B
14
,
3438
3445
(
1976
).
50.
Evans
,
R.
, “
Fluids adsorbed in narrow pores: Phase equilibria and structure
,”
J. Phys.: Condens. Matter.
2
,
8989
9007
(
1990
).
51.
Morone
,
F.
,
K.
Burleson-Lesser
,
H.
Vinutha
,
S.
Sastry
, and
H. A.
Makse
, “
The jamming transition is a k-core percolation transition
,”
Phys. A
516
,
172
177
(
2019
).
52.
Papadopoulos
,
A.
,
M. A.
Porter
,
K. E.
Daniels
, and
D. S.
Bassett
, “
Network analysis of particles and grains
,”
J. Complex Netw.
6
,
485
(
2018
).
53.
Dapeng
,
B.
,
J.
Zhang
,
B.
Chakraborty
, and
R. P.
Behringer
, “
Jamming by shear
,”
Nature
480
,
355
(
2011
).
54.
Vinutha
,
H. A.
, and
S.
Sastry
, “
Disentangling the role of structure and friction in shear jamming
,”
Nat. Phys.
12
,
578
583
(
2016
).
55.
Morris
,
J. F.
, “
Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena
,”
Annu. Rev. Fluid Mech.
52
,
121
144
(
2020
).
56.
Goldenfeld
,
N.
,
Lectures on Phase Transitions and the Renormalization Group
(
CRC
,
Nw York, NY
,
1992
).
57.
Jacobs
,
D. J.
, and
M. F.
Thorpe
, “
Generic rigidity percolation in two dimensions
,”
Phys. Rev. E
53
,
3682
3693
(
1996
).
58.
Singh
,
A.
,
S.
Pednekar
,
J.
Chun
,
M. M.
Denn
, and
J. F.
Morris
, “
From yielding to shear jamming in a cohesive frictional suspension
,”
Phys. Rev. Lett.
122
,
098004
(
2019
).
59.
Jorjadze
,
I.
,
L.-L.
Pontani
, and
J.
Brujic
, “
Microscopic approach to the nonlinear elasticity of compressed emulsions
,”
Phys. Rev. Lett.
110
,
048302
(
2013
).
60.
Lin
,
N. Y. C.
, and
I.
Cohen
, “
Relating microstructure and particle-level stress in colloidal crystals under increased confinement
,”
Soft Matter
12
,
9058
9067
(
2016
).
61.
More
,
R. V.
, and
A. M.
Ardekani
, “
Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions
,”
Phys. Rev. E
103
,
1
12
(
2021
).
62.
Miller
,
J. M.
,
D. L.
Blair
, and
J. S.
Urbach
, “
Order and density fluctuations near the boundary in sheared dense suspensions
,”
Front. Phys.
10
,
991540
(
2022
).
You do not currently have access to this content.