We report the effect of particle surface roughness on creep deformation and subsequent strain recovery in dense colloidal suspensions. The suspensions are composed of hard-spherelike poly(methyl methacrylate) smooth (S) and rough (R) colloids with particle volume fractions ϕS = 0.64 ± 0.01 and ϕR = 0.56 ± 0.01, corresponding to a distance of 3.0% and 3.4% based on their jamming volume fractions ( ϕ J S = 0.66 ± 0.01, ϕ J R = 0.58 ± 0.01). The suspensions are subject to a range of shear stresses (0.01–0.07 Pa) above and below the yield stress values of the two suspensions ( σ y S = 0.035 Pa, σ y R = 0.02 Pa). During creep, suspensions of rough colloids exhibit four to five times higher strain deformation compared to smooth colloids, irrespective of the applied stress. The interlocking of surface asperities in rough colloids is likely to generate a heterogeneous microstructure, favoring dynamic particle activity and percolation of strain heterogeneities, therefore resulting in higher magnitude of strain deformation and an earlier onset of steady flow. Strain recovery after the cessation of stress reveals a nonmonotonic recoverable strain for rough colloids, where the peak recoverable strain is observed near the yield stress, followed by a steep decline with increasing stress. This type of response suggests that frictional constraints between geometrically frustrated interlocking contacts can serve as particle bonds capable of higher elastic recovery but only near the yield stress. Understanding how particle roughness affects macroscopic creep and recovery is useful in designing yield stress fluids for additive manufacturing and product formulations.

1.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
(
3
),
035005
(
2017
).
2.
Ewoldt
,
R. H.
, and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
441
(
2022
).
3.
Leocmach
,
M.
,
C.
Perge
,
T.
Divoux
, and
S.
Manneville
, “
Creep and fracture of a protein gel under stress
,”
Phys. Rev. Lett.
113
(
3
),
038303
(
2014
).
4.
Mariyate
,
J.
, and
A.
Bera
, “
Recent progresses of microemulsions-based nanofluids as a potential tool for enhanced oil recovery
,”
Fuel
306
,
121640
(
2021
).
5.
Kramb
,
R.
,
R.
Zhang
,
K. S.
Schweizer
, and
C.
Zukoski
, “
Glass formation and shear elasticity in dense suspensions of repulsive anisotropic particles
,”
Phys. Rev. Lett.
105
(
5
),
055702
(
2010
).
6.
Kramb
,
R. C.
, and
C. F.
Zukoski
, “
Nonlinear rheology and yielding in dense suspensions of hard anisotropic colloids
,”
J. Rheol.
55
(
5
),
1069
1084
(
2011
).
7.
Townsend
,
J. M.
,
E. C.
Beck
,
S. H.
Gehrke
,
C. J.
Berkland
, and
M. S.
Detamore
, “
Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting
,”
Prog. Polym. Sci.
91
,
126
140
(
2019
).
8.
Nelson
,
A. Z.
,
K. S.
Schweizer
,
B. M.
Rauzan
,
R. G.
Nuzzo
,
J.
Vermant
, and
R. H.
Ewoldt
, “
Designing and transforming yield-stress fluids
,”
Curr. Opin. Solid State Mater. Sci.
23
(
5
),
100758
(
2019
).
9.
Eshgarf
,
H.
,
A. A.
Nadooshan
, and
A.
Raisi
, “
An overview on properties and applications of magnetorheological fluids: Dampers, batteries, valves and brakes
,”
J. Energy Storage
50
,
104648
(
2022
).
10.
Ewoldt
,
R. H.
, “
Extremely soft: Design with rheologically complex fluids
,”
Soft Robot.
1
(
1
),
12
20
(
2014
).
11.
Nelson
,
A. Z.
,
R. E.
Bras
,
J.
Liu
, and
R. H.
Ewoldt
, “
Extending yield-stress fluid paradigms
,”
J. Rheol.
62
(
1
),
357
369
(
2018
).
12.
Christopoulou
,
C.
,
G.
Petekidis
,
B.
Erwin
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Ageing and yield behaviour in model soft colloidal glasses
,”
Philos. Trans. R. Soc. Math. Phys. Eng. Sci.
367
(
1909
),
5051
5071
(
2009
).
13.
Le Grand
,
A.
, and
G.
Petekidis
, “
Effects of particle softness on the rheology and yielding of colloidal glasses
,”
Rheol. Acta
47
,
579
590
(
2008
).
14.
Kramb
,
R. C.
, and
C. F.
Zukoski
, “
Yielding in dense suspensions: Cage, bond, and rotational confinements
,”
J. Phys.: Condens. Matter
23
(
3
),
035102
(
2010
).
15.
Sentjabrskaja
,
T.
,
E.
Babaliari
,
J.
Hendricks
,
M.
Laurati
,
G.
Petekidis
, and
S. U.
Egelhaaf
, “
Yielding of binary colloidal glasses
,”
Soft Matter
9
(
17
),
4524
4533
(
2013
).
16.
Sentjabrskaja
,
T.
,
J.
Hendricks
,
A. R.
Jacob
,
G.
Petekidis
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Binary colloidal glasses under transient stress-and strain-controlled shear
,”
J. Rheol.
62
(
1
),
149
159
(
2018
).
17.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion-and attraction-dominated colloidal glasses
,”
J. Rheol.
52
(
2
),
649
676
(
2008
).
18.
Zaccarelli
,
E.
, and
W. C. K.
Poon
, “
Colloidal glasses and gels: The interplay of bonding and caging
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
36
),
15203
15208
(
2009
).
19.
Chan
,
H. K.
, and
A.
Mohraz
, “
Microdynamics of dense colloidal suspensions and gels under constant-stress deformation
,”
J. Rheol.
58
(
5
),
1419
1439
(
2014
).
20.
Reddy
,
G. R. K.
, and
Y. M.
Joshi
, “
Aging under stress and mechanical fragility of soft solids of laponite
,”
J. Appl. Phys.
104
(
9
),
094901
(
2008
).
21.
Richards
,
J.
,
B.
Guy
,
E.
Blanco
,
M.
Hermes
,
G.
Poy
, and
W.
Poon
, “
The role of friction in the yielding of adhesive non-Brownian suspensions
,”
J. Rheol.
64
(
2
),
405
412
(
2020
).
22.
Guy
,
B.
,
J.
Richards
,
D.
Hodgson
,
E.
Blanco
, and
W.
Poon
, “
Constraint-based approach to granular dispersion rheology
,”
Phys. Rev. Lett.
121
(
12
),
128001
(
2018
).
23.
Hsiao
,
L. C.
,
I.
Saha-Dalal
,
R. G.
Larson
, and
M. J.
Solomon
, “
Translational and rotational dynamics in dense suspensions of smooth and rough colloids
,”
Soft Matter
13
(
48
),
9229
9236
(
2017
).
24.
Pradeep
,
S.
,
A.
Wessel
, and
L. C.
Hsiao
, “
Hydrodynamic origin for the suspension viscoelasticity of rough colloids
,”
J. Rheol.
66
(
5
),
895
906
(
2022
).
25.
Schroyen
,
B.
,
C.-P.
Hsu
,
L.
Isa
,
P.
Van Puyvelde
, and
J.
Vermant
, “
Stress contributions in colloidal suspensions: The smooth, the rough, and the hairy
,”
Phys. Rev. Lett.
122
(
21
),
218001
(
2019
).
26.
Ilhan
,
B.
,
F.
Mugele
, and
M. H. G.
Duits
, “
Roughness induced rotational slowdown near the colloidal glass transition
,”
J. Colloid Interface Sci.
607
,
1709
1716
(
2022
).
27.
Pradeep
,
S.
,
M.
Nabizadeh
,
A. R.
Jacob
,
S.
Jamali
, and
L. C.
Hsiao
, “
Jamming distance dictates colloidal shear thickening
,”
Phys. Rev. Lett.
127
(
15
),
158002
(
2021
).
28.
Hsu
,
C.-P.
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
20
),
5117
5122
(
2018
).
29.
Lootens
,
D.
,
H.
Van Damme
,
Y.
Hémar
, and
P.
Hébraud
, “
Dilatant flow of concentrated suspensions of rough particles
,”
Phys. Rev. Lett.
95
(
26
),
268302
(
2005
).
30.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
(
18
),
188301
(
2016
).
31.
Hsiao
,
L. C.
,
S.
Jamali
,
E.
Glynos
,
P. F.
Green
,
R. G.
Larson
, and
M. J.
Solomon
, “
Rheological state diagrams for rough colloids in shear flow
,”
Phys. Rev. Lett.
119
(
15
),
158001
(
2017
).
32.
Bourrianne
,
P.
,
V.
Niggel
,
G.
Polly
,
T.
Divoux
, and
G. H.
McKinley
, “
Tuning the shear thickening of suspensions through surface roughness and physico-chemical interactions
,”
Phys. Rev. Res.
4
(
3
),
033062
(
2022
).
33.
San-Miguel
,
A.
, and
S. H.
Behrens
, “
Influence of nanoscale particle roughness on the stability of pickering emulsions
,”
Langmuir
28
(
33
),
12038
12043
(
2012
).
34.
Zanini
,
M.
,
C.
Marschelke
,
S. E.
Anachkov
,
E.
Marini
,
A.
Synytska
, and
L.
Isa
, “
Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces
,”
Nat. Commun.
8
(
1
),
15701
(
2017
).
35.
Zanini
,
M.
,
A.
Cingolani
,
C.-P.
Hsu
,
Fernández-Rodríguez
,
G.
Soligno
,
A.
Beltzung
,
S.
Caimi
,
D.
Mitrano
,
G.
Storti
, and
L.
Isa
, “
Mechanical phase inversion of pickering emulsions via metastable wetting of rough colloids
,”
Soft Matter
15
(
39
),
7888
7900
(
2019
).
36.
Weijgertze
,
H. M.
,
W. K.
Kegel
, and
M.
Zanini
, “
Patchy rough colloids as pickering stabilizers
,”
Soft Matter
16
(
34
),
8002
8012
(
2020
).
37.
Hermes
,
M.
, and
P. S.
Clegg
, “
Yielding and flow of concentrated pickering emulsions
,”
Soft Matter
9
(
31
),
7568
7575
(
2013
).
38.
Hsu
,
C.-P.
,
H. E.
Baysal
,
G.
Wirenborn
,
G.
Mårtensson
,
L. P.
Wittberg
, and
L.
Isa
, “
Roughness-dependent clogging of particle suspensions flowing into a constriction
,”
Soft Matter
17
(
31
),
7252
7259
(
2021
).
39.
Rice
,
R.
,
R.
Roth
, and
C. P.
Royall
, “
Polyhedral colloidal ‘rocks’: Low-dimensional networks
,”
Soft Matter
8
(
4
),
1163
1167
(
2012
).
40.
Weeks
,
E. R.
, “Introduction to the colloidal glass transition,”
ACS Macro Lett.
6
(1), 27–34 (
2017
).
41.
Weeks
,
E. R.
, and
D.
Weitz
, “
Properties of cage rearrangements observed near the colloidal glass transition
,”
Phys. Rev. Lett.
89
(
9
),
095704
(
2002
).
42.
Weeks
,
E. R.
, and
D. A.
Weitz
, “
Subdiffusion and the cage effect studied near the colloidal glass transition
,”
Chem. Phys.
284
(
1–2
),
361
367
(
2002
).
43.
Weeks
,
E. R.
,
J. C.
Crocker
,
A. C.
Levitt
,
A.
Schofield
, and
D. A.
Weitz
, “
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
,”
Science
287
(
5453
),
627
631
(
2000
).
44.
Hunter
,
G. L.
, and
E. R.
Weeks
, “
The physics of the colloidal glass transition
,”
Rep. Prog. Phys.
75
(
6
),
066501
(
2012
).
45.
Petekidis
,
G.
,
A.
Moussaid
, and
P.
Pusey
, “
Rearrangements in hard-sphere glasses under oscillatory shear strain
,”
Phys. Rev. E
66
(
5
),
051402
(
2002
).
46.
Petekidis
,
G.
,
D.
Vlassopoulos
, and
P. N.
Pusey
, “
Yielding and flow of sheared colloidal glasses
,”
J. Phys.: Condens. Matter
16
(
38
),
S3955
S3963
(
2004
).
47.
Petekidis
,
G.
,
D.
Vlassopoulos
, and
P. N.
Pusey
, “
Yielding and flow of colloidal glasses
,”
Faraday Discuss.
123
,
287
302
(
2003
).
48.
Ballesta
,
P.
, and
G.
Petekidis
, “
Creep and aging of hard-sphere glasses under constant stress
,”
Phys. Rev. E
93
(
4
),
042613
(
2016
).
49.
Pamvouxoglou
,
A.
,
A. B.
Schofield
,
G.
Petekidis
, and
S. U.
Egelhaaf
, “
Stress versus strain controlled shear: Yielding and relaxation of concentrated colloidal suspensions
,”
J. Rheol.
65
(
6
),
1219
1233
(
2021
).
50.
Sentjabrskaja
,
T.
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
(
1
),
1
11
(
2015
).
51.
Donley
,
G. J.
,
S.
Narayanan
,
M. A.
Wade
,
J. D.
Park
,
R. L.
Leheny
,
J. L.
Harden
, and
S. A.
Rogers
, “
Investigation of the yielding transition in concentrated colloidal systems via rheo-XPCS
,”
Proc. Natl. Acad. Sci. U.S.A.
120
(
18
),
e2215517120
(
2023
).
52.
Siebenbürger
,
M.
,
M.
Ballauff
, and
T.
Voigtmann
, “
Creep in colloidal glasses
,”
Phys. Rev. Lett.
108
(
25
),
255701
(
2012
).
53.
Popovic
,
M.
,
T. W.
de Geus
,
W.
Ji
,
A.
Rosso
, and
M.
Wyart
, “
Scaling description of creep flow in amorphous solids
,”
Phys. Rev. Lett.
129
(
20
),
208001
(
2022
).
54.
Ghosh
,
A.
,
Z.
Budrikis
,
V.
Chikkadi
,
A. L.
Sellerio
,
S.
Zapperi
, and
P.
Schall
, “
Direct observation of percolation in the yielding transition of colloidal glasses
,”
Phys. Rev. Lett.
118
(
14
),
148001
(
2017
).
55.
Laurati
,
M.
,
P.
Maßhoff
,
K. J.
Mutch
,
S. U.
Egelhaaf
, and
A.
Zaccone
, “
Long-lived neighbors determine the rheological response of glasses
,”
Phys. Rev. Lett.
118
(
1
),
018002
(
2017
).
56.
Sentjabrskaja
,
T.
,
M.
Hermes
,
W.
Poon
,
C.
Estrada
,
R.
Castaneda-Priego
,
S.
Egelhaaf
, and
M.
Laurati
, “
Transient dynamics during stress overshoots in binary colloidal glasses
,”
Soft Matter
10
(
34
),
6546
6555
(
2014
).
57.
Donley
,
G. J.
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G ″overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
36
),
21945
21952
(
2020
).
58.
Denisov
,
D. V.
,
M. T.
Dang
,
B.
Struth
,
A.
Zaccone
,
G. H.
Wegdam
, and
P.
Schall
, “
Sharp symmetry-change marks the mechanical failure transition of glasses
,”
Sci. Rep.
5
(
1
),
14359
(
2015
).
59.
Dang
,
M. T.
,
D.
Denisov
,
B.
Struth
,
A.
Zaccone
, and
P.
Schall
, “
Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear
,”
Eur. Phys. J. E
39
,
44
(
2016
).
60.
Furst
,
E. M.
, “
Applications of laser tweezers in complex fluid rheology
,”
Curr. Opin. Colloid Interface Sci.
10
(
1–2
),
79
86
(
2005
).
61.
Amann
,
C. P.
,
D.
Denisov
,
M. T.
Dang
,
B.
Struth
,
P.
Schall
, and
M.
Fuchs
, “
Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory
,”
J. Chem. Phys.
143
(
3
),
034505
(
2015
).
62.
Van Megen
,
W.
, and
S.
Underwood
, “
Glass transition in colloidal hard spheres: Mode-coupling theory analysis
,”
Phys. Rev. Lett.
70
(
18
),
2766
2769
(
1993
).
63.
Van Megen
,
W.
, and
S.
Underwood
, “
Glass transition in colloidal hard spheres: Measurement and mode-coupling-theory analysis of the coherent intermediate scattering function
,”
Phys. Rev. E
49
(
5
),
4206
4220
(
1994
).
64.
Schweizer
,
K. S.
, and
E. J.
Saltzman
, “
Activated hopping, barrier fluctuations, and heterogeneity in glassy suspensions and liquids
,”
J. Phys. Chem. B
108
(
51
),
19729
19741
(
2004
).
65.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
Microscopic activated dynamics theory of the shear rheology and stress overshoot in ultradense glass-forming fluids and colloidal suspensions
,”
J. Rheol.
67
(
2
),
559
578
(
2023
).
66.
Ghosh
,
A.
, and
K. S.
Schweizer
, “
The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation
,”
J. Chem. Phys.
153
(
19
),
194502
(
2020
).
67.
Yatsenko
,
G.
, and
K. S.
Schweizer
, “
Ideal glass transitions, shear modulus, activated dynamics, and yielding in fluids of nonspherical objects
,”
J. Chem. Phys.
126
(
1
),
014505
(
2007
).
68.
Zhang
,
R.
, and
K. S.
Schweizer
, “
Theory of coupled translational-rotational glassy dynamics in dense fluids of uniaxial particles
,”
Phys. Rev. E
80
(
1
),
011502
(
2009
).
69.
Moghimi
,
E.
, and
G.
Petekidis
, “
Mechanisms of two-step yielding in attractive colloidal glasses
,”
J. Rheol.
64
(
5
),
1209
1225
(
2020
).
70.
Koumakis
,
N.
, and
G.
Petekidis
, “
Two step yielding in attractive colloids: Transition from gels to attractive glasses
,”
Soft Matter
7
(
6
),
2456
2470
(
2011
).
71.
Pradeep
,
S.
, and
L. C.
Hsiao
, “
Contact criterion for suspensions of smooth and rough colloids
,”
Soft Matter
16
(
21
),
4980
4989
(
2020
).
72.
Farr
,
R. S.
, and
R. D.
Groot
, “
Close packing density of polydisperse hard spheres
,”
J. Chem. Phys.
131
(
24
),
244104
(
2009
).
73.
Phan
,
S.-E.
,
W. B.
Russel
,
J.
Zhu
, and
P. M.
Chaikin
, “
Effects of polydispersity on hard sphere crystals
,”
J. Chem. Phys.
108
(
23
),
9789
9795
(
1998
).
74.
Schaertl
,
W.
, and
H.
Sillescu
, “
Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings
,”
J. Stat. Phys.
77
(
5
),
1007
1025
(
1994
).
75.
Percus
,
J. K.
, and
G. J.
Yevick
, “
Analysis of classical statistical mechanics by means of collective coordinates
,”
Phys. Rev.
110
(
1
),
1
13
(
1958
).
76.
Eilers
,
v. H.
, “
Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration
,”
Kolloid Z.
97
(
3
),
313
321
(
1941
).
77.
Abbasi Moud
,
A.
,
J.
Poisson
,
Z. M.
Hudson
, and
S. G.
Hatzikiriakos
, “
Yield stress and wall slip of kaolinite networks
,”
Phys. Fluids
33
(
5
),
053105
(
2021
).
78.
Ballesta
,
P.
,
G.
Petekidis
,
L.
Isa
,
W. C. K.
Poon
, and
R.
Besseling
, “
Wall slip and flow of concentrated hard-sphere colloidal suspensions
,”
J. Rheol.
56
(
5
),
1005
1037
(
2012
).
79.
Buscall
,
R.
, “
Wall slip in dispersion rheometry
,”
J. Rheol.
54
(
6
),
1177
1183
(
2010
).
80.
Cloitre
,
M.
, and
R. T.
Bonnecaze
, “
A review on wall slip in high solid dispersions
,”
Rheol. Acta
56
,
283
305
(
2017
).
81.
Paredes
,
J.
,
N.
Shahidzadeh
, and
D.
Bonn
, “
Wall slip and fluidity in emulsion flow
,”
Phys. Rev. E
92
(
4
),
042313
(
2015
).
82.
Yoshimura
,
A.
, and
R. K.
Prud’homme
, “
Wall slip corrections for Couette and parallel disk viscometers
,”
J. Rheol.
32
(
1
),
53
67
(
1988
).
83.
Lee
,
J.
,
Z.
Jiang
,
J.
Wang
,
A. R.
Sandy
,
S.
Narayanan
, and
X.-M.
Lin
, “
Unraveling the role of order-to-disorder transition in shear thickening suspensions
,”
Phys. Rev. Lett.
120
(
2
),
028002
(
2018
).
84.
Joshi
,
Y. M.
, “
Dynamics of colloidal glasses and gels
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
181
202
(
2014
).
85.
Joshi
,
Y. M.
, and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
,
521
549
(
2018
).
86.
Conrad
,
J. C.
,
P. P.
Dhillon
,
E. R.
Weeks
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Contribution of slow clusters to the bulk elasticity near the colloidal glass transition
,”
Phys. Rev. Lett.
97
(
26
),
265701
(
2006
).
87.
Moghimi
,
E.
,
A. R.
Jacob
,
N.
Koumakis
, and
G.
Petekidis
, “
Colloidal gels tuned by oscillatory shear
,”
Soft Matter
13
(
12
),
2371
2383
(
2017
).
88.
Mewis
,
J.
, and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University
, New York,
2012
).
89.
Phillips
,
R.
,
J.
Brady
, and
G.
Bossis
, “
Hydrodynamic transport properties of hard-sphere dispersions. I.: Suspensions of freely mobile particles
,”
Phys. Fluids
31
(
12
),
3462
3472
(
1988
).
90.
Miguel
,
M.-C.
,
A.
Vespignani
,
M.
Zaiser
, and
S.
Zapperi
, “
Dislocation jamming and Andrade creep
,”
Phys. Rev. Lett.
89
(
16
),
165501
(
2002
).
91.
Divoux
,
T.
,
C.
Barentin
, and
S.
Manneville
, “
From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids
,”
Soft Matter
7
(
18
),
8409
8418
(
2011
).
92.
Andrade
,
E. N. D. C.
, “
On the viscous flow in metals, and allied phenomena
,”
Proc. R. Soc. Lond. Ser., A
84
(
567
),
1
12
(
1910
).
93.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Creep ringing in rheometry or how to deal with oft-discarded data in step stress tests!
,”
Rheol. Bull.
76
(
4
), 4–6, 22–24 (
2007
).
94.
Schall
,
P.
,
D. A.
Weitz
, and
F.
Spaepen
, “
Structural rearrangements that govern flow in colloidal glasses
,”
Science
318
(
5858
),
1895
1899
(
2007
).
95.
Singh
,
P. K.
,
J. C.-W.
Lee
,
K. A.
Patankar
, and
S. A.
Rogers
, “
Revisiting the basis of transient rheological material functions: Insights from recoverable strain measurements
,”
J. Rheol.
65
(
2
),
129
144
(
2021
).
96.
Pham
,
K.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S.
Egelhaaf
,
P.
Pusey
, and
W.
Poon
, “
Yielding of colloidal glasses
,”
Europhys. Lett.
75
(
4
),
624
630
(
2006
).
You do not currently have access to this content.