We study the extensional flow properties by characterizing the capillarity-driven pinching dynamics of dense colloidal suspensions at a constant volume fraction ϕ = 0.40 with polymer-induced depletion interactions using a dripping-onto-substrate (DoS) protocol. Methacrylate copolymer particles with dimethylacrylamide copolymer brushes are suspended in a refractive-index- and density-matched mixture of 80 (w/w)% glycerol in water with NaCl added to screen the electrostatic repulsions. Depletion attractions between the colloids are introduced by adding polyacrylamide polymers of weight and dispersity. The addition of polymer delays and modifies the pinch-off dynamics of the dense suspensions, depending on the size and dispersity of the polymer. The extensional relaxation time λ E of suspensions collapses as a function of the normalized free volume polymer concentration c / c with the corresponding polymer solutions, indicating that the elastic properties of the polymer solutions control the extensional time scale. Following the results of our previous study [Soetrisno et al., Macromolecules 56, 4919–4928 (2023)], the polymer size determines the scaling exponent of λ E for colloid-polymer mixtures in the dilute regime and high dispersity shifts the concentration where the scaling of λ E transitions from power-law to linear. The filament lifespans t f of colloid-polymer mixtures and of polymer solutions collapse onto a master curve as a function of c / c when normalized by the filament lifespan of the corresponding fluid without polymer t f , 0. These results provide insight into the role of the polymer size in dictating the pinching dynamics and extensional rheology of colloid-polymer mixtures and further suggest that the shear and extensional responses of these mixtures can be separately tuned through the concentrations of the two constituents.

1.
Conrad
,
J. C.
,
S. R.
Ferreira
,
J.
Yoshikawa
,
R. F.
Shepherd
,
B. Y.
Ahn
, and
J. A.
Lewis
, “
Designing colloidal suspensions for directed materials assembly
,”
Curr. Opin. Colloid Interface Sci.
16
,
71
79
(
2011
).
2.
Truby
,
R. L.
, and
J. A.
Lewis
, “
Printing soft matter in three dimensions
,”
Nature
540
,
371
378
(
2016
).
3.
Roussel
,
N.
, “
Rheological requirements for printable concretes
,”
Cem. Concr. Res.
112
,
76
85
(
2018
).
4.
Román-Manso
,
B.
,
J.
Muth
,
L. J.
Gibson
,
W.
Ruettinger
, and
J. A.
Lewis
, “
Hierarchically porous ceramics via direct writing of binary colloidal gel foams
,”
ACS Appl. Mater. Interfaces
13
,
8976
8984
(
2021
).
5.
Xu
,
J.
,
C.
Slykas
,
A. S.
Braegelman
,
K. G.
Alvarez
,
T.
Kasl
,
B. W.
Boudouris
,
M. J.
Webber
,
V.
Sharma
, and
W. A.
Phillip
, “
Heavy metal removal using structured sorbents 3D printed from carbon nanotube-enriched polymer solutions
,”
Matter
5
,
3432
3451
(
2022
).
6.
Guo
,
Y.
,
H. S.
Patanwala
,
B.
Bognet
, and
A. W. K.
Ma
, “
Inkjet and inkjet-based 3D printing: Connecting fluid properties and printing performance
,”
Rapid Prototyping J.
23
,
562
576
(
2017
).
7.
Jimenez
,
L. N.
,
C. D. V.
Martínez Narváez
,
C.
Xu
,
S.
Bacchi
, and
V.
Sharma
, “
The rheologically-complex fluid beauty of nail lacquer formulations
,”
Soft Matter
17
,
5197
5213
(
2021
).
8.
Larson
,
R. G.
,
A. K.
Van Dyk
,
T.
Chatterjee
, and
V. V.
Ginzburg
, “
Associative thickeners for waterborne paints: Structure, characterization, rheology, and modeling
,”
Prog. Polym. Sci.
129
,
101546
(
2022
).
9.
Crespy
,
D.
,
K.
Friedemann
, and
A.-M.
Popa
, “
Colloid-electrospinning: Fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions
,”
Macromol. Rapid Commun.
33
,
1978
1995
(
2012
).
10.
Yu
,
J.
, and
C.-W.
Kan
, “
Review on fabrication of structurally colored fibers by electrospinning
,”
Fibers
6
,
70
(
2018
).
11.
Nelson
,
A. Z.
,
K. S.
Schweizer
,
B. M.
Rauzan
,
R. G.
Nuzzo
,
J.
Vermant
, and
R. H.
Ewoldt
, “
Designing and transforming yield-stress fluids
,”
Curr. Opin. Solid State Mater. Sci.
23
,
100758
(
2019
).
12.
Ewoldt
,
R. H.
, and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
441
(
2022
).
13.
Tanner
,
R. I.
, “
Rheology of noncolloidal suspensions with non-newtonian matrices
,”
J. Rheol.
63
,
705
717
(
2019
).
14.
Boelens
,
A. M. P.
,
J. J.
de Pablo
,
S.
Lim
,
L.
Francis
,
B. Y.
Ahn
, and
J. A.
Lewis
, “
Visualization and simulation of the transfer process of index-matched silica microparticle inks for gravure printing
,”
AIChE J.
63
,
1419
1429
(
2017
).
15.
Lakhdar
,
Y.
,
C.
Tuck
,
J.
Binner
,
A.
Terry
, and
R.
Goodridge
, “
Additive manufacturing of advanced ceramic materials
,”
Prog. Mater. Sci.
116
,
100736
(
2021
).
16.
Valentine
,
A. D.
,
T. A.
Busbee
,
J. W.
Boley
,
J. R.
Raney
,
A.
Chortos
,
A.
Kotikian
,
J. D.
Berrigan
,
M. F.
Durstock
, and
J. A.
Lewis
, “
Hybrid 3D printing of soft electronics
,”
Adv. Mater.
29
,
1703817
(
2017
).
17.
Tagliaferri
,
S.
,
A.
Panagiotopoulos
, and
C.
Mattevi
, “
Direct ink writing of energy materials
,”
Mater. Adv.
2
,
540
563
(
2021
).
18.
Gholamipour-Shirazi
,
A.
,
I. T.
Norton
, and
T.
Mills
, “
Designing hydrocolloid based food-ink formulations for extrusion 3D printing
,”
Food Hydrocoll.
95
,
161
167
(
2019
).
19.
McClements
,
D. J.
, “
Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects
,”
Adv. Colloid Interface Sci.
240
,
31
59
(
2017
).
20.
Acosta
,
M.
,
V. L.
Wiesner
,
C. J.
Martinez
,
R. W.
Trice
, and
J. P.
Youngblood
, “
Effect of polyvinylpyrrolidone additions on the rheology of aqueous, highly loaded alumina suspensions
,”
J. Am. Ceram. Soc.
96
,
1372
1382
(
2013
).
21.
Rueschhoff
,
L.
,
W.
Costakis
,
M.
Michie
,
J.
Youngblood
, and
R.
Trice
, “
Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions
,”
Int. J. Appl. Ceram. Technol.
13
,
821
830
(
2016
).
22.
Corder
,
R. D.
,
Y.-J.
Chen
,
P.
Pibulchinda
,
J. P.
Youngblood
,
A. M.
Ardekani
, and
K. A.
Erk
, “
Rheology of 3D printable ceramic suspensions: Effects of non-adsorbing polymer on discontinuous shear thickening
,”
Soft Matter
19
,
882
891
(
2023
).
23.
Pandey
,
R.
, and
J. C.
Conrad
, “
Effects of attraction strength on microchannel flow of colloid-polymer depletion mixtures
,”
Soft Matter
8
,
10695
10703
(
2012
).
24.
McKinley
,
G. H.
, “
Visco-elasto-capillary thinning and break-up of complex fluids
,”
Rheol. Rev.
3
,
1
48
(
2005
).
25.
Clasen
,
C.
,
P. M.
Phillips
,
L.
Palangetic
, and
J.
Vermant
, “
Dispensing of rheologically complex fluids: The map of misery
,”
AIChE J.
58
,
3242
3255
(
2012
).
26.
Dinic
,
J.
,
C. D. V.
Martínez Narváez
, and
V.
Sharma
, Rheology of unentangled polymer solutions depends on three macromolecular properties: Flexibility, extensibility, and segmental dissymmetry, in Macromolecular Engineering (John Wiley & Sons, Ltd, Chichester, 2022), pp. 1–36.
27.
Nicolas
,
M.
, “
Experimental study of gravity-driven dense suspension jets
,”
Phys. Fluids
14
,
3570
3576
(
2002
).
28.
Miskin
,
M. Z.
, and
H. M.
Jaeger
, “
Droplet formation and scaling in dense suspensions
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
4389
4394
(
2012
).
29.
Furbank
,
R. J.
, and
J. F.
Morris
, “
An experimental study of particle effects on drop formation
,”
Phys. Fluids
16
,
1777
1790
(
2004
).
30.
Bertrand
,
T.
,
C.
Bonnoit
,
E.
Clément
, and
A.
Lindner
, “
Dynamics of drop formation in granular suspensions: The role of volume fraction
,”
Granular Matter
14
,
169
174
(
2012
).
31.
Bonnoit
,
C.
,
T.
Bertrand
,
E.
Clément
, and
A.
Lindner
, “
Accelerated drop detachment in granular suspensions
,”
Phys. Fluids
24
,
043304
(
2012
).
32.
van Deen
,
M. S.
,
T.
Bertrand
,
N.
Vu
,
D.
Quéré
,
E.
Clément
, and
A.
Lindner
, “
Particles accelerate the detachment of viscous liquids
,”
Rheol. Acta
52
,
403
412
(
2013
).
33.
Lindner
,
A.
,
J. E.
Fiscina
, and
C.
Wagner
, “
Single particles accelerate final stages of capillary break-up
,”
Europhys. Lett.
110
,
64002
(
2015
).
34.
Thiévenaz
,
V.
,
S.
Rajesh
, and
A.
Sauret
, “
Droplet detachment and pinch-off of bidisperse particulate suspensions
,”
Soft Matter
17
,
6202
6211
(
2021
).
35.
Thiévenaz
,
V.
, and
A.
Sauret
, “
The onset of heterogeneity in the pinch-off of suspension drops
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2120893119
(
2022
).
36.
Zhao
,
H.
,
H.-F.
Liu
,
J.-L.
Xu
,
W.-F.
Li
, and
K.-F.
Lin
, “
Inhomogeneity in breakup of suspensions
,”
Phys. Fluids
27
,
063303
(
2015
).
37.
Mathues
,
W.
,
C.
McIlroy
,
O. G.
Harlen
, and
C.
Clasen
, “
Capillary breakup of suspensions near pinch-off
,”
Phys. Fluids
27
,
093301
(
2015
).
38.
Rubio-Rubio
,
M.
,
W.
Mathues
,
A.
Sevilla
, and
C.
Clasen
, “
One-dimensional modelling of the thinning of particulate suspensions near pinch-off
,”
Int. J. Multiphase Flow
108
,
202
210
(
2018
).
39.
Moon
,
J. Y.
,
S. J.
Lee
,
K. H.
Ahn
, and
S. J.
Lee
, “
Filament thinning of silicone oil/poly (methyl methacrylate) suspensions under extensional flow
,”
Rheol. Acta
54
,
705
714
(
2015
).
40.
Moon
,
J. Y.
,
S. J.
Lee
,
K. H.
Ahn
, and
S. J.
Lee
, “
Heterogeneity in the final stage of filament breakup of silicone oil/pmma suspensions
,”
Rheol. Acta
55
,
91
101
(
2016
).
41.
Smith
,
M. I.
,
R.
Besseling
,
M. E.
Cates
, and
V.
Bertola
, “
Dilatancy in the flow and fracture of stretched colloidal suspensions
,”
Nat. Commun.
1
,
114
(
2010
).
42.
Smith
,
M. I.
, “
Fracture of jammed colloidal suspensions
,”
Sci. Rep.
5
,
14175
(
2015
).
43.
Andrade
,
R. J. E.
,
A. R.
Jacob
,
F. J.
Galindo-Rosales
,
L.
Campo-Deaño
,
Q.
Huang
,
O.
Hassager
, and
G.
Petekidis
, “
Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and extensional flow
,”
J. Rheol.
64
,
1179
1196
(
2020
).
44.
Thiévenaz
,
V.
, and
A.
Sauret
, “
Pinch-off of viscoelastic particulate suspensions
,”
Phys. Rev. Fluid
6
,
L062301
(
2021
).
45.
Rajesh
,
S.
,
V.
Thiévenaz
, and
A.
Sauret
, “
Transition to the viscoelastic regime in the thinning of polymer solutions
,”
Soft Matter
18
,
3147
3156
(
2022
).
46.
Dai
,
S.
, and
R. I.
Tanner
, “
Rheology of semi-dilute suspensions with a viscoelastic matrix
,”
Rheol. Acta
59
,
477
486
(
2020
).
47.
Dai
,
S.-C.
,
F.
Qi
, and
R. I.
Tanner
, “
Viscometric functions of concentrated non-colloidal suspensions of spheres in a viscoelastic matrix
,”
J. Rheol.
58
,
183
198
(
2014
).
48.
Harich
,
R.
,
A.
Deblais
,
A.
Colin
, and
H.
Kellay
, “
Depletion forces induce visco-elasto-capillary thinning of non-Brownian suspensions
,”
Europhys. Lett.
114
,
58006
(
2016
).
49.
Ock
,
J. H.
,
J. S.
Hong
, and
K. H.
Ahn
, “
Acceleration of instability during the capillary thinning process due to the addition of particles to a poly (ethylene oxide) solution
,”
J. Non-Newton. Fluid Mech.
258
,
58
68
(
2018
).
50.
McIlroy
,
C.
, and
O. G.
Harlen
, “
Modelling capillary break-up of particulate suspensions
,”
Phys. Fluids
26
,
033101
(
2014
).
51.
Bischoff White
,
E. E.
,
M.
Chellamuthu
, and
J. P.
Rothstein
, “
Extensional rheology of a shear-thickening cornstarch and water suspension
,”
Rheol. Acta
49
,
119
129
(
2010
).
52.
Metzner
,
A. B.
, “
Rheology of suspensions in polymeric liquids
,”
J. Rheol.
29
,
739
775
(
1985
).
53.
Shaqfeh
,
E. S. G.
, “
On the rheology of particle suspensions in viscoelastic fluids
,”
AIChE J.
65
,
e16575
(
2019
).
54.
Koch
,
D. L.
, and
G.
Subramanian
, “
The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field
,”
J. Non-Newton. Fluid Mech.
138
,
87
97
(
2006
).
55.
Yang
,
M.
, and
E. S. G.
Shaqfeh
, “
Mechanism of shear thickening in suspensions of rigid spheres in boger fluids. Part I: Dilute suspensions
,”
J. Rheol.
62
,
1363
1377
(
2018
).
56.
Yang
,
M.
, and
E. S. G.
Shaqfeh
, “
Mechanism of shear thickening in suspensions of rigid spheres in boger fluids. Part II: Suspensions at finite concentration
,”
J. Rheol.
62
,
1379
1396
(
2018
).
57.
Dai
,
S.
, and
R. I.
Tanner
, “
Elongational flows of some non-colloidal suspensions
,”
Rheol. Acta
56
,
63
71
(
2017
).
58.
Chellamuthu
,
M.
,
E. M.
Arndt
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening nanoparticle suspensions
,”
Soft Matter
5
,
2117
2124
(
2009
).
59.
Le Meins
,
J.-F.
,
P.
Moldenaers
, and
J.
Mewis
, “
Suspensions of monodisperse spheres in polymer melts: Particle size effects in extensional flow
,”
Rheol. Acta
42
,
184
190
(
2003
).
60.
Khandavalli
,
S.
, and
J. P.
Rothstein
, “
Extensional rheology of shear-thickening fumed silica nanoparticles dispersed in an aqueous polyethylene oxide solution
,”
J. Rheol.
58
,
411
431
(
2014
).
61.
Lauser
,
K. T.
,
A. L.
Rueter
, and
M. A.
Calabrese
, “
Small-volume extensional rheology of concentrated protein and protein-excipient solutions
,”
Soft Matter
17
,
9624
9635
(
2021
).
62.
Dinic
,
J.
, and
V.
Sharma
, “
Flexibility, extensibility, and ratio of kuhn length to packing length govern the pinching dynamics, coil-stretch transition, and rheology of polymer solutions
,”
Macromolecules
53
,
4821
4835
(
2020
).
63.
Soetrisno
,
D. D.
,
C. D. V.
Martínez Narváez
,
V.
Sharma
, and
J. C.
Conrad
, “
Concentration regimes for extensional relaxation times of unentangled polymer solutions
,”
Macromolecules
56
,
4919
4928
(
2023
).
64.
Park
,
N.
,
V.
Rathee
,
D. L.
Blair
, and
J. C.
Conrad
, “
Contact networks enhance shear thickening in attractive colloid-polymer mixtures
,”
Phys. Rev. Lett.
122
,
228003
(
2019
).
65.
Park
,
N.
,
E. J.
Umanzor
, and
J. C.
Conrad
, “
Aqueous colloid+ polymer depletion system for confocal microscopy and rheology
,”
Front. Phys.
6
,
42
(
2018
).
66.
Kodger
,
T. E.
,
R. E.
Guerra
, and
J.
Sprakel
, “
Precise colloids with tunable interactions for confocal microscopy
,”
Sci. Rep.
5
,
14635
(
2015
).
67.
Chatterjee
,
T.
,
A. K.
Van Dyk
,
V. V.
Ginzburg
, and
A. I.
Nakatani
, “
Formulation-controlled positive and negative first normal stress differences in waterborne hydrophobically modified ethylene oxide urethane (heur)-latex suspensions
,”
ACS Macro Lett.
6
,
716
720
(
2017
).
68.
Lu
,
P. J.
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
69.
Lekkerkerker
,
H. N. W.
,
W. C.-K.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P. B.
Warren
, “
Phase behaviour of colloid+ polymer mixtures
,”
Europhys. Lett.
20
,
559
564
(
1992
).
70.
Ilett
,
S. M.
,
A.
Orrock
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
51
,
1344
1352
(
1995
).
71.
Lekkerkerker
,
H. N.
, and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
2011
).
72.
Crocker
,
J. C.
, and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
73.
Kulicke
,
W. M.
,
G.
Kiss
, and
R. S.
Porter
, “
Inertial normal-force corrections in rotational rheometry
,”
Rheol. Acta
16
,
568
572
(
1977
).
74.
Dinic
,
J.
,
Y.
Zhang
,
L. N.
Jimenez
, and
V.
Sharma
, “
Extensional relaxation times of dilute, aqueous polymer solutions
,”
ACS Macro Lett.
4
,
804
808
(
2015
).
75.
Dinic
,
J.
,
L. N.
Jimenez
, and
V.
Sharma
, “
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids
,”
Lab Chip
17
,
460
473
(
2017
).
76.
Trujillo-Pino
,
A.
,
K.
Krissian
,
M.
Alemán-Flores
, and
D.
Santana-Cedrés
, “
Accurate subpixel edge location based on partial area effect
,”
Image Vis.
31
,
72
90
(
2013
).
77.
Papageorgiou
,
D. T.
, “
On the breakup of viscous liquid threads
,”
Phys. Fluids
7
,
1529
1544
(
1995
).
78.
Martínez Narváez
,
C. D. V.
,
J.
Dinic
,
X.
Lu
,
C.
Wang
,
R.
Rock
,
H.
Sun
, and
V.
Sharma
, “
Rheology and pinching dynamics of associative polysaccharide solutions
,”
Macromolecules
54
,
6372
6388
(
2021
).
79.
McKinley
,
G. H.
, and
A.
Tripathi
, “
How to extract the newtonian viscosity from capillary breakup measurements in a filament rheometer
,”
J. Rheol.
44
,
653
670
(
2000
).
80.
Fardin
,
M. A.
,
M.
Hautefeuille
, and
V.
Sharma
, “
Spreading, pinching, and coalescence: The ohnesorge units
,”
Soft Matter
18
,
3291
3303
(
2022
).
81.
Chen
,
Y.-J.
, and
P. H.
Steen
, “
Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge
,”
J. Fluid Mech.
341
,
245
267
(
1997
).
82.
Day
,
R. F.
,
E. J.
Hinch
, and
J. R.
Lister
, “
Self-similar capillary pinchoff of an inviscid fluid
,”
Phys. Rev. Lett.
80
,
704
707
(
1998
).
83.
Dinic
,
J.
, and
V.
Sharma
, “
Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
8766
8774
(
2019
).
84.
Entov
,
V. M.
, and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newton. Fluid Mech.
72
,
31
53
(
1997
).
85.
Pham
,
K. N.
,
G.
Petekidis
,
D.
Vlassopoulos
,
S. U.
Egelhaaf
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Yielding behavior of repulsion-and attraction-dominated colloidal glasses
,”
J. Rheol.
52
,
649
676
(
2008
).
86.
Tokuyama
,
M.
, and
I.
Oppenheim
, “
On the theory of concentrated hard-sphere suspensions
,”
Physica A
216
,
85
119
(
1995
).
87.
Cwalina
,
C. D.
, and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
88.
Royer
,
J. R.
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
,
188301
(
2016
).
89.
Hsiao
,
L. C.
,
S.
Jamali
,
E.
Glynos
,
P. F.
Green
,
R. G.
Larson
, and
M. J.
Solomon
, “
Rheological state diagrams for rough colloids in shear flow
,”
Phys. Rev. Lett.
119
,
158001
(
2017
).
90.
Gopalakrishnan
,
V.
, and
C. F.
Zukoski
, “
Effect of attractions on shear thickening in dense suspensions
,”
J. Rheol.
48
,
1321
1344
(
2004
).
91.
Doshi
,
P.
,
R.
Suryo
,
O. E.
Yildirim
,
G. H.
McKinley
, and
O. A.
Basaran
, “
Scaling in pinch-off of generalized newtonian fluids
,”
J. Non-Newton. Fluid Mech.
113
,
1
27
(
2003
).
92.
Suryo
,
R.
, and
O. A.
Basaran
, “
Local dynamics during pinch-off of liquid threads of power law fluids: Scaling analysis and self-similarity
,”
J. Non-Newton. Fluid Mech.
138
,
134
160
(
2006
).
93.
Huisman
,
F. M.
,
S. R.
Friedman
, and
P.
Taborek
, “
Pinch-off dynamics in foams, emulsions and suspensions
,”
Soft Matter
8
,
6767
6774
(
2012
).
94.
Dinic
,
J.
, and
V.
Sharma
, “
Power laws dominate shear and extensional rheology response and capillarity-driven pinching dynamics of entangled hydroxyethyl cellulose (HEC) solutions
,”
Macromolecules
53
,
3424
3437
(
2020
).
95.
Dinic
,
J.
,
M.
Biagioli
, and
V.
Sharma
, “
Pinch-off dynamics and extensional relaxation times of intrinsically semi-dilute polymer solutions characterized by dripping-onto-substrate rheometry
,”
J. Polym. Sci. Part B: Polym. Phys.
55
,
1692
1704
(
2017
).
96.
Cheal
,
O.
, and
C.
Ness
, “
Rheology of dense granular suspensions under extensional flow
,”
J. Rheol.
62
,
501
512
(
2018
).
97.
Sen
,
S.
,
R. R.
Fernandes
, and
R. H.
Ewoldt
, “Soft glassy materials with tunable extensibility,” arXiv:2308.14223 [cond-mat.soft] (2023).
98.
Sur
,
S.
, and
J.
Rothstein
, “
Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity
,”
J. Rheol.
62
,
1245
1259
(
2018
).
99.
See the supplementary material online for protocol and results (Fig. S1) for determining the salt concentration for hard-sphere interactions); description of the free volume calculations; confocal micrographs of depletion suspensions (Fig. S2) and number density fluctuations (Fig. S3); radius evolution fitting in terms of 1/Oh 2 (Fig. S4); radius evolution and extensional viscosity for the ϕ = 0.40 TtMA suspension radius evolution (Fig. S5); description of the Trouton ratio calculation, including extensional viscosity as a function of Hencky strain (Fig. S6), terminal extensional viscosity (Fig. S7), plateau values of the shear viscosity (Fig. S8), and Trouton ratio as a function of concentration (Fig. S9); Weissenberg number calculations (Fig. S10); and captions for Movies S1–S6.

Supplementary Material

You do not currently have access to this content.