Shear-induced crystallization behavior was studied using a phase-separated blend comprising a polypropylene continuous phase and a low-density polyethylene (LDPE) dispersion, which is known to show strain hardening in transient elongation viscosity. In this study, crystallization behavior was mainly evaluated by the light intensity transmitted through a transparent parallel-plate geometry. It was found that shear-induced crystallization was greatly accelerated by the addition of LDPE, resulting in a high crystallization temperature and a highly oriented structure. When the sample was cooled slowly, however, shear-induced crystallization was not accelerated by LDPE. Furthermore, extrusion was performed using a capillary rheometer. The molecular orientation in the strands collected after cooling in the air was found to be enhanced by the LDPE addition, suggesting that flow-induced crystallization was accelerated even at capillary extrusion.

1.
Pasquini
,
N.
,
Polypropylene Handbook
, 2nd ed. (
Hanser
,
Munich
,
2005
).
2.
Jozsef
,
K.
, and
T.
Barany
,
Polypropylene Handbook. Morphology, Blends and Composites
(
Springer Nature
,
Cham
,
2019
).
3.
Yamaguchi
,
M.
,
H.
Miyata
, and
K.
Nitta
, “
Compatibility of binary blends of polypropylene with ethylene-alpha-olefin copolymer
,”
J. Appl. Polym. Sci.
62
,
87
97
(
1996
).
4.
Weimann
,
P. A.
,
T. D.
Jones
,
M. A.
Hillmyer
,
F. S.
Bates
,
J. D.
Londono
,
Y.
Melnichenko
,
G. D.
Wignall
, and
K.
Almdal
, “
Phase behavior of isotactic polypropylene−poly(ethylene/ethylethylene) random copolymer blends
,”
Macromolecules
30
,
3650
3657
(
1997
).
5.
Montes
,
P.
,
Y. A.
Rafiq
, and
M. J.
Hill
, “
A study of blends of isotactic polypropylene with high density polyethylene by transmission electron microscopy
,”
Polymer
39
,
6669
6672
(
1998
).
6.
Yamaguchi
,
M.
, and
H.
Miyata
, “
Influence of stereoregularity of polypropylene on miscibility with ethylene-1-hexene copolymer
,”
Macromolecules
32
,
5911
5916
(
1999
).
7.
Mäder
,
D.
,
Y.
Thomann
,
J.
Suhm
, and
R.
Mülhaupt
, “
Influence of comonomer incorporation on morphology and thermal and mechanical properties of blends based upon isotactic metallocene–polypropene and random ethene/1-butene copolymers
,”
J. Appl. Polym. Sci.
74
,
838
848
(
1999
).
8.
Lohse
,
D. J.
, “
The influence of chemical structure on polyolefin melt rheology and miscibility
,”
J. Macromol. Sci., Part C: Polym. Rev.
45
,
289
308
(
2005
).
9.
Alamo
,
R. G.
,
J. D.
Londono
,
L.
Mandelkern
,
F.
Stehling
, and
G. D.
Wignall
, “
Phase behavior of blends of linear and branched polyethylenes in the molten and solid states by small-angle neutron scattering
,”
Macromolecules
27
,
411
417
(
1994
).
10.
Fredrickson
,
G. H.
, and
A. J.
Liu
, “
Design of miscible polyolefin copolymer blends
,”
J. Polym. Sci., Part B: Polym. Phys.
33
,
1203
1212
(
1995
).
11.
Yamaguchi
,
M.
, “
Effect of molecular structure in branched polyethylene on adhesion properties with polypropylene
,”
J. Appl. Polym. Sci.
70
,
457
463
(
1998
).
12.
Robertson
,
R. E.
, and
D. R.
Paul
, “
Stress-strain behavior of polyolefin blends
,”
J. Appl. Polym. Sci.
17
,
2579
2595
(
1973
).
13.
Rizzo
,
G.
, and
G.
Spadaro
, “
Mechanical properties of low density polyethylene-isotactic polypropylene blends—I. Effect of mixing time
,”
Eur. Polym. J.
24
,
303
306
(
1988
).
14.
Liang
,
J. Z.
,
C. Y.
Tang
, and
H. C.
Man
, “
Flow and mechanical properties of polypropylene/low density polyethylene blends
,”
J. Mater. Process. Technol.
66
,
158
164
(
1997
).
15.
Dong
,
L. S.
,
R. H.
Olley
, and
D. C.
Bassett
, “
On morphology and the competition between crystallization and phase separation in polypropylene-polyethylene blends
,”
J. Mater. Sci.
33
,
4043
4048
(
1998
).
16.
Sugimoto
,
M.
,
Y.
Masubuchi
,
J.
Takimoto
, and
K.
Koyama
, “
Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2.: uniaxial and biaxial extensional flow
,”
Macromolecules
34
,
6056
6063
(
2001
).
17.
Kida
,
T.
,
T.
Kimura
,
A.
Eno
,
K.
Janchai
,
M.
Yamaguchi
,
Y.
Otsuki
,
T.
Kimura
,
T.
Mizukawa
,
T.
Murakami
,
K.
Hato
, and
T.
Okawa
, “
Effect of ultra-high-molecular-weight molecular chains on the morphology, crystallization, and mechanical properties of polypropylene
,”
Polymers
13
,
4222
(
2021
).
18.
Hingmann
,
R.
, and
B. L.
Marczinke
, “
Shear and elongational flow properties of polypropylene melt
,”
J. Rheol.
38
,
573
587
(
1994
).
19.
Auhl
,
D.
,
J.
Stange
,
H.
Münstedt
,
B.
Krause
,
D.
Voigt
,
A.
Lederer
,
U.
Lappan
, and
K.
Lunkwitz
, “
Long-chain branched polypropylenes by electron beam irradiation and their rheological properties
,”
Macromolecules
37
,
9465
9472
(
2004
).
20.
Yamaguchi
,
M.
, and
M. H.
Wagner
, “
Impact of processing history on rheological properties for branched polypropylene
,”
Polymer
47
,
3629
3635
(
2006
).
21.
Yamaguchi
,
M.
, and
H.
Miyata
, “
Strain hardening behavior in elongational viscosity for binary blends of linear polymer and crosslinked polymer
,”
Polym. J.
32
,
164
170
(
2000
).
22.
Thomas
,
A. S.
,
R. D.
Carl
,
M. L.
Richard
,
L. W.
Jonathan
,
A.
David
,
G. H.
Noel
, and
J. S.
Richard
, “
Self-organization and polyolefin nucleation efficacy of 1,3:2,4-di-p-methylbenzylidene sorbitol
,”
J. Polym. Sci., Part B: Polym. Phys.
35
,
2617
2628
(
1997
).
23.
Ogino
,
Y.
,
H.
Fukushima
,
G.
Matsuba
,
N.
Takahashi
,
K.
Nishida
, and
T. J. P.
Kanaya
, “
Effects of high molecular weight component on crystallization of polyethylene under shear flow
,”
Polymer
47
,
5669
5677
(
2006
).
24.
Balzano
,
L.
,
N.
Kukalyekar
,
S.
Rastogi
,
G. W. M.
Peters
, and
J. C.
Chadwick
, “
Crystallization and dissolution of flow-induced precursors
,”
Phys. Rev. Lett.
100
,
048302
(
2008
).
25.
Mykhaylyk
,
O. O.
,
P.
Chambon
,
C.
Impradice
,
J. P. A.
Fairclough
,
N. J.
Terrill
, and
A. J.
Ryan
, “
Control of structural morphology in shear-induced crystallization of polymers
,”
Macromolecules
43
,
2389
2405
(
2010
).
26.
Hamad
,
F. G.
,
R. H.
Colby
, and
S. T.
Milner
, “
Onset of flow-induced crystallization kinetics of highly isotactic polypropylene
,”
Macromolecules
48
,
3725
3738
(
2015
).
27.
Jordan
,
A. M.
,
K.
Kim
,
D.
Soetrisno
,
J.
Hannah
,
F. S.
Bates
,
S. A.
Jaffer
,
O.
Lhost
, and
C.
Macosko
, “
Role of crystallization on polyolefin interfaces: An improved outlook for polyolefin blends
,”
Macromolecules
51
,
2506
2516
(
2018
).
28.
Ruan
,
C.
, “
Skin-core-skin structure of polymer crystallization investigated by multiscale simulation
,”
Materials
11
,
610
(
2018
).
29.
Zhang
,
Q.
,
L.
Li
,
F.
Su
,
Y.
Ji
,
S.
Ali
,
H.
Zhao
,
L.
Meng
, and
L.
Li
, “
From molecular entanglement network to crystal-cross-linked network and crystal scaffold during film blowing of polyethylene: An in situ synchrotron radiation small- and wide-angle x-ray scattering study
,”
Macromolecules
51
,
4350
4362
(
2018
).
30.
Nazari
,
B.
,
H.
Tran
,
B.
Beauregard
,
M.
Flynn-Hepford
,
D.
Harrell
,
S. T.
Milner
, and
R. H.
Colby
, “
Two distinct morphologies for semicrystalline isotactic polypropylene crystallized after shear flow
,”
Macromolecules
51
,
4750
4761
(
2018
).
31.
Speranza
,
V.
,
S.
Liparoti
,
V.
Volpe
,
G.
Titomanlio
, and
R.
Pantani
, “
Modelling of morphology development towards spherulites and shish–kebabs: Application to isothermal flow-induced crystallization experiments on isotactic polypropylene
,”
Polymer
196
,
122459
(
2020
).
32.
Nie
,
C.
,
F.
Peng
,
R.
Cao
,
K.
Cui
,
J.
Sheng
,
W.
Chen
, and
L.
Li
, “
Recent progress in flow-induced polymer crystallization
,”
J. Polym. Sci.
60
,
3149
3175
(
2022
).
33.
Nie
,
Y.
,
Y.
Zhao
,
G.
Matsuba
, and
W.
Hu
, “
Shish-kebab crystallites initiated by shear fracture in bulk polymers: 2. Crystallization on shearing
,”
Polymer
274
,
125909
(
2023
).
34.
Seemork
,
J.
,
M.
Siriprumpoonthum
,
Y.
Lee
,
S.
Nobukawa
, and
M.
Yamaguchi
, “
Effect of die geometry on drawdown force of polypropylene at capillary extrusion
,”
Adv. Polym. Technol.
34
,
21477
(
2015
).
35.
Dealy
,
J. M.
,
D. J.
Read
, and
R. G.
Larson
,
Structure and Rheology of Molten Polymers
, 2nd ed. (
Hanser
,
Munich
,
2005
).
36.
Fetters
,
L. J.
,
D. J.
Lohse
, and
W. W.
Graessley
, “
Chain dimensions and entanglement spacings in dense macromolecular systems
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
1023
1033
(
1999
).
37.
Agarwal
,
P. K.
,
R. H.
Somani
,
W.
Weng
,
A.
Mehta
,
L.
Yang
,
S.
Ran
,
L.
Liu
, and
B. S.
Hsiao
, “
Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and-WAXD
,”
Macromolecules
36
,
5226
5235
(
2003
).
38.
Fernandez-Ballester
,
L.
,
D. W.
Thurman
,
W.
Zhou
, and
J. A.
Kornfield
, “
Effect of long chains on the threshold stresses for flow-induced crystallization in iPP: Shish kebabs vs sausages
,”
Macromolecules
45
,
6557
6570
(
2012
).
39.
Zhou
,
D.
,
S.
Yang
,
J.
Lei
,
B. S.
Hsiao
, and
Z.
Li
, “
Role of stably entangled chain network density in shish-kebab formation in polyethylene under an intense flow field
,”
Macromolecules
48
,
6652
6661
(
2015
).
40.
Wingstrand
,
S. L.
,
M.
Drongelen
,
K.
Mortensen
,
R. S.
Graham
,
Q.
Huang
, and
O.
Hassager
, “
Influence of extensional stress overshoot on crystallization of LDPE
,”
Macromolecules
50
,
1134
1140
(
2017
).
41.
Wingstrand
,
S. L.
,
B.
Shen
,
J. A.
Kornfield
,
K.
Mortensen
,
D.
Parisi
,
D.
Vlassopoulos
, and
O.
Hassager
, “
Rheological link between polymer melts with a high molecular weight tail and enhanced formation of shish-kebabs
,”
ACS Macro Lett.
6
,
1268
1273
(
2017
).
42.
Drabek
,
J.
,
K.
Janchai
,
T.
Kida
,
M.
Yamaguchi
, and
M.
Zatloukal
, “
Effect of pre-shear on flow-induced crystallization of branched polypropylene
,”
AIP Conf. Proc.
2997
,
020005
(
2023
).
43.
Fujii
,
Y.
,
R.
Nishikawa
,
P.
Phulkerd
, and
M.
Yamaguchi
, “
Modifying the rheological properties of polypropylene under elongational flow by adding polyethylene
,”
J. Rheol.
63
,
11
18
(
2019
).
44.
Batchelor
,
G. K.
, “
The stress generated in a non-dilute suspension of elongated particles by pure straining motion
,”
J. Fluid Mech.
46
,
813
829
(
1971
).
45.
Mewis
,
J.
, and
A. B.
Metzner
, “
The rheological properties of suspensions of fibres in newtonian fluids subjected to extensional deformations
,”
J. Fluid Mech.
62
,
593
600
(
1974
).
46.
Laun
,
H. M.
, “
Orientation effects and rheology of short glass fiber-reinforced thermoplastics
,”
Colloid Polym. Sci.
262
,
257
269
(
1984
).
47.
Otsuki
,
Y.
,
Y.
Fujii
,
H.
Sasaki
,
P.
Phulkerd
, and
M.
Yamaguchi
, “
Experimental and numerical study on transient elongational viscosity for PP/LDPE blends
,”
Polym. J.
52
,
529
538
(
2020
).
48.
Yamaguchi
,
M.
,
Y.
Fujii
, and
P.
Phulkerd
, “
Rheological properties of polyolefin blends containing long-chain branched polypropylene as dispersed phase
,”
J. Soc. Rheol., Jpn.
48
,
109
112
(
2020
).
49.
Kugimoto
,
D.
,
S.
Kouda
, and
M.
Yamaguchi
, “
Environment, modification of poly (lactic acid) rheological properties using ethylene–vinyl acetate copolymer
,”
J. Polym. Environ.
29
,
121
129
(
2021
).
50.
Yamaguchi
,
M.
,
D. B.
Todd
, and
C. G.
Gogos
, “
Rheological properties of LDPE processed by conventional processing machines
,”
Adv. Polym. Technol.
22
,
179
187
(
2003
).
51.
Yamaguchi
,
M.
, and
M.
Takahashi
, “
Rheological properties of low-density polyethylenes produced by tubular and vessel processes
,”
Polymer
42
,
8663
8670
(
2001
).
52.
Janchai
,
K.
,
T.
Kida
,
T.
Inoue
,
S.
Iwasaki
, and
M.
Yamaguchi
, “
Crystallization behavior of isotactic polypropylene containing a fibrous nucleating agent in a flow field
,”
Polym. J.
54
,
367
375
(
2022
).
53.
Janchai
,
K.
,
T.
Kida
,
M.
Yamaguchi
,
T.
Sunagawa
, and
T.
Okura
, “
Optimum processing conditions for the maximum crystallization rate of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)
,”
Sci. Rep.
13
,
497
(
2023
).
54.
Palierne
,
J. F.
, “
Linear rheology of viscoelastic emulsions with interfacial tension
,”
Rheol. Acta
29
,
204
214
(
1990
).
55.
Doi
,
M.
, and
T.
Ohta
, “
Dynamics and rheology of complex interfaces. I
,”
J. Chem. Phys.
95
,
1242
1248
(
1991
).
56.
Carmeli
,
E.
,
G.
Kandioller
,
M.
Gahleitner
,
A. J.
Müller
,
D.
Tranchida
, and
D.
Cavallo
, “
Continuous cooling curve diagrams of isotactic-polypropylene/polyethylene blends: Mutual nucleating effects under fast cooling conditions
,”
Macromolecules
54
,
4834
4846
(
2021
).
57.
Parisi
,
D.
,
A.
Han
,
J.
Seo
, and
R. H.
Colby
, “
Rheological response of entangled isotactic polypropylene melts in strong shear flows: Edge fracture, flow curves, and normal stress
,”
J. Rheol.
65
,
605
616
(
2021
).
58.
Fukuda
,
Y.
,
T.
Kida
, and
M.
Yamaguchi
, “
Mechanical properties of isotactic polypropylene with nodular and spherulite morphologies
,”
Polym. Eng. Sci.
63,
4043
4050
(
2023
).
59.
Nesse
,
W. D.
,
Introduction of Optical Mineralogy
, 2nd ed (
Cambridge University
,
Oxford
,
1991
).
60.
Masuko
,
T.
,
H.
Tanaka
, and
S.
Okajima
, “
Studies on biaxial stretching of polypropylene film.: IV.: overall orientation during one-step biaxial stretching and its application to the estimation of the principal refractive indices of isotactic polypropylene
,”
J. Polym. Sci. A-2
8
,
1565
1574
(
1970
).
61.
Neergaard
,
J.
,
K.
Park
,
D. C.
Venerus
, and
J. D.
Schieber
, “
Exponential shear flow of linear, entangled polymeric liquids
,”
J. Rheol.
44
,
1043
1054
(
2000
).
62.
Zülle
,
B.
,
J.
Linster
,
J.
Meissner
, and
H. P.
Hürlimann
, “
Deformation hardening and thinning in both elongation and shear of a low density polyethylene melt
,”
J. Rheol.
31
,
583
598
(
1987
).
63.
Doshi
,
S.
, and
J. M.
Dealy
, “
Exponential shear: A strong flow
,”
J. Rheol.
31
,
563
582
(
1987
).
64.
Venerus
,
D. C.
, “
Exponential shear flow of branched polymer melts
,”
Rheol. Acta
39
,
71
79
(
2000
).
65.
Graham
,
R. S.
,
T. C. B.
McLeish
, and
O. G.
Harlen
, “
Using the pom-pom equations to analyze polymer melts in exponential shear
,”
J. Rheol.
45
,
275
290
(
2001
).
66.
Wagner
,
H. M.
,
V. H.
Rolon-Garrido
, and
C. K.
Chai
, “
Exponential shear flow of branched polyethylenes in rotational parallel-plate geometry
,”
Rheol. Acta
45
,
164
173
(
2005
).
67.
Liu
,
G.
,
H.
Sun
,
S.
Rangou
,
K.
Ntetsikas
,
A.
Avgeropoulos
, and
S.
Wang
, “
Studying the origin of ‘strain hardening’: basic difference between extension and shear
,”
J. Rheol.
57
,
89
104
(
2013
).
68.
Seemork
,
J.
,
T.
Sako
,
A. M.
Mohd Amran
, and
M.
Yamaguchi
, “
Rheological response under nonisothermal stretching for immiscible blends of isotactic polypropylene and acrylate polymers
,”
J. Rheol.
61
,
1
11
(
2017
).
69.
See supplementary material online for sample sheets under crossed polars after the POM observation. POM images at various temperatures during cooling. The samples had the shear history at (a) 10, (b) 30, and (c) 50 s−1. The strands extruded from a capillary rheometer at various shear rates.

Supplementary Material

You do not currently have access to this content.