We all instinctively poke, bounce, scoop, and observe materials to understand rheological properties quickly. Yet, these observations are rarely analyzed quantitatively. To address this, here we introduce the paradigm of protorheology: approximate quantitative inference from simple observations. Several case studies demonstrate how protorheology is an inclusive entry to rheology for a broad range of practitioners and strengthens the confidence and interpretation of accurate laboratory measurements. We survey a range of creative tests according to which rheological phenomenon is revealed. Some new working equations are derived, and all working equations are summarized for convenient reference and comparison across different methods. This establishes a framework to enable increased use of photos, videos, and quantitative inference and to support the increasing interest in digital image analysis, inverse methods, and high-throughput characterization being applied to rheological properties.

1.
Berra
,
Y.
,
The Yogi Book: "I Really Didn’t Say Everything I Said"
(
Workman Publishing
, New York,
2010
).
2.
Edgeworth
,
R.
,
B. J.
Dalton
, and
T.
Parnell
, “
The pitch drop experiment
,”
Eur. J. Phys.
5
(
4
),
198
200
(
1984
).
3.
Johnston
,
R.
, “
World’s slowest-moving drop caught on camera at last
,”
Nature News
18
(
July
),
1
2
(
2013
).
4.
Feynman
,
R. P.
, “
An outsider’s inside view of the challenger inquiry
,”
Phys. Today
41
(
2
),
26
37
(
1988
).
5.
Hossain
,
M. T.
, and
R. H.
Ewoldt
, “
Do-it-yourself rheometry
,”
Phys. Fluids
34
(
5
), 053105 (
2022
).
6.
Macosko
,
C. W.
,
Rheology Principles, Measurements and Applications
(
VCH Publishers. Inc., New York
,
1994
).
7.
Coussot
,
P.
,
Rheometry of Pastes, Suspensions, and Granular Materials
(Wiley and Sons, New York,
2005
).
8.
Piau
,
J. M.
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges
,”
J. Non-Newtonian Fluid Mech.
144
(
1
),
1
29
(
2007
).
9.
Benmouffok-Benbelkacem
,
G.
,
F.
Caton
,
C.
Baravian
, and
S.
Skali-Lami
, “
Non-linear viscoelasticity and temporal behavior of typical yield stress fluids: Carbopol, Xanthan and Ketchup
,”
Rheol. Acta
49
(
3
),
305
314
(
2010
).
10.
Aktas
,
S.
,
D. M.
Kalyon
,
B. M.
Marín-Santibáñez
, and
J.
Pérez-González
, “
Shear viscosity and wall slip behavior of a viscoplastic hydrogel
,”
J. Rheol.
58
(
2
),
513
535
(
2014
).
11.
Jaworski
,
Z.
,
T.
Spychaj
,
A.
Story
, and
G.
Story
, “
Carbomer microgels as model yield-stress fluids
,”
Rev. Chem. Eng.
38
(
7
),
881
919
(
2021
).
12.
Bonn
,
D.
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
(
3
),
35005
(
2017
).
13.
Nelson
,
A. Z.
, and
R. H.
Ewoldt
, “
Design of yield-stress fluids: A rheology-to-structure inverse problem
,”
Soft Matter
13
(
41
),
7578
7594
(
2017
).
14.
Mises
,
R. V.
, “
Mechanik der festen Körper im plastisch- deformablen Zustand
,”
Nachrichten von Der K. Gesellschaft Der Wissenschaften.
1913
(
1
),
582
592
(
1913
).
15.
Ewoldt
,
R. H.
,
M. T.
Johnston
, and
L. M.
Caretta
, “Experimental challenges of shear rheology: How to avoid bad data,” in Complex Fluids in Biological Systems, Springer Biological Engineering Series, edited by S. Spagnolie (Springer, New York, 2015), pp. 207–241
16.
Pipkin
,
A. C.
,
Lectures on Viscoelasticity Theory
(Springer, New York,
1972
).
17.
Blaauwgeers
,
R.
,
M.
Blazkova
,
M.
Človevčko
,
V. B.
Eltsov
,
R.
de Graaf
,
J.
Hosio
,
M.
Krusius
,
D.
Schmoranzer
,
W.
Schoepe
,
L.
Skrbek
,
P.
Skyba
,
R. E.
Solntsev
, and
D. E.
Zmeev
, “
Quartz tuning fork: Thermometer, pressure- and viscometer for helium liquids
,”
J. Low Temp. Phys.
146
,
537
562
(
2007
).
18.
Waszczuk
,
K.
,
T.
Piasecki
,
K.
Nitsch
, and
T.
Gotszalk
, “
Application of piezoelectric tuning forks in liquid viscosity and density measurements
,”
Sens. Actuators, B: Chem.
160
(
1
),
517
523
(
2011
).
19.
Zhang, M., D. Chen, X. He, and X. Wang, “
A hydrodynamic model for measuring fluid density and viscosity by using quartz tuning forks
,”
Sensors
, 20, 198 (2020).
20.
Huppert
,
H. E.
, “
The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
,”
J. Fluid Mech.
121
,
43
58
(
1982
).
21.
Huppert
,
H. E.
, “
Gravity currents: A personal perspective
,”
J. Fluid Mech.
554
,
299
322
(
2006
).
22.
Bonn
,
D.
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
(
2
),
739
805
(
2009
).
23.
Tanner
,
L. H.
, “
The spreading of silicone oil drops on horizontal surfaces
,”
J. Phys. D: Appl. Phys.
12
(
9
),
1473
1484
(
1979
).
24.
Corman
,
R. E.
, and
R. H.
Ewoldt
, “
Mapping linear viscoelasticity for design and tactile intuition
,”
Appl. Rheol.
29
(
1
),
141
161
(
2019
).
25.
Johnson
,
K. L.
, “
One hundred years of Hertz contact
,”
Proc. Inst. Mech. Eng.
196
(
1
),
363
378
(
1982
).
26.
Antypov
,
D.
, and
J. A.
Elliott
, “
On an analytical solution for the damped Hertzian spring
,”
EPL (Europhys. Lett.)
94
(
5
),
50004
(
2011
).
27.
Swanekamp
,
R. J.
,
J. J.
Welch
, and
B. L.
Nilsson
, “
Proteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils
,”
Chem. Commun.
50
(
70
),
10133
10136
(
2014
).
28.
Lohrasbi
,
S.
,
E.
Mirzaei
,
A.
Karimizade
,
S.
Takallu
, and
A.
Rezaei
, “
Collagen/cellulose nanofiber hydrogel scaffold: Physical, mechanical and cell biocompatibility properties
,”
Cellulose
27
(
2
),
927
940
(
2020
).
29.
Hou
,
Z.
,
W. M.
Nau
, and
R.
Hoogenboom
, “
Reversible covalent locking of a supramolecular hydrogel: Via UV-controlled anthracene dimerization
,”
Polym. Chem.
12
(
2
),
307
315
(
2021
).
30.
Lee
,
H. Y.
,
K. K.
Diehn
,
K.
Sun
,
T.
Chen
, and
S. R.
Raghavan
, “
Reversible photorheological fluids based on spiropyran-doped reverse micelles
,”
J. Am. Chem. Soc.
133
(
22
),
8461
8463
(
2011
).
31.
Chaibundit
,
C.
,
N. M. P. S.
Ricardo
,
N. M. P. S.
Ricardo
,
B. M. D.
O’Driscoll
,
I. W.
Hamley
,
S. G.
Yeates
, and
C.
Booth
, “
Aqueous gels of mixtures of ionic surfactant SDS with pluronic copolymers P123 or F127
,”
Langmuir
25
(
24
),
13776
13783
(
2009
).
32.
Colly
,
A.
,
C.
Marquette
, and
E.-J.
Courtial
, “
Poloxamer/poly(ethylene glycol) self-healing hydrogel for high-precision freeform reversible embedding of suspended hydrogel
,”
Langmuir
37
(
14
),
4154
4162
(
2021
).
33.
Teichman
,
J.
, and
L.
Mahadevan
, “
The viscous catenary
,”
J. Fluid Mech.
478
,
71
80
(
2003
).
34.
Chiu-Webster
,
S.
, and
J. R.
Lister
, “
The fall of a viscous thread onto a moving surface: A ‘fluid-mechanical sewing machine’
,”
J. Fluid Mech.
569
,
89
111
(
2006
).
35.
Koulakis
,
J. P.
, and
C. D.
Mitescu
, “
The viscous catenary
,”
Phys. Fluids
19
(
9
), 091103 (
2007
).
36.
Koulakis
,
J. P.
,
C. D.
Mitescu
,
F.
Brochard-Wyart
,
P. G.
De Gennes
, and
E.
Guyon
, “
The viscous catenary revisited: Experiments and theory
,”
J. Fluid Mech.
609
,
87
110
(
2008
).
37.
Hewitt
,
I. J.
, and
N. J.
Balmforth
, “
Viscoelastic ribbons
,”
J. Fluid Mech.
908
, A5 (
2021
).
38.
Elahi
,
S. H.
,
H.
Adelnia
, and
H. R.
Shahverdi
, “
A simple accurate method for measuring viscosity of liquid metals at high temperatures
,”
J. Rheol.
56
(
4
),
941
954
(
2012
).
39.
Tang
,
J. X.
, “
Measurements of fluid viscosity using a miniature ball drop device
,”
Rev. Sci. Instrum.
87
(
5
), 054301 (
2016
).
40.
Ferguson
,
J.
, and
Z.
Kemblowski
,
Applied Fluid Rheology
(
Springer
,
New York
,
1991
).
41.
Stokes
,
G. G.
, “On the effect of the internal friction of fluids on the motion of pendulums” (1851).
42.
Chhabra
,
R. P.
,
Bubbles, Drops, and Particles in Non-Newtonian Fluids
(CRC Press, Florida,
2006
).
43.
Brizard
,
M.
,
M.
Megharfi
,
C.
Verdier
, and
E.
Mah
, “
Design of a high precision falling ball viscometer
,”
Rev. Sci. Instrum.
2
(
76
),
025109
(
2005
).
44.
Happel
,
J.
, and
H.
Brenner
, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Springer, Dordrecht, Neth., 2012)
45.
Faxén
,
H.
, “
Der widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist
,”
Ann. Phys.
373
(
10
),
89
119
(
1922
).
46.
Gottlieb
,
M.
, “
Zero-shear-rate viscosity measurements for polymer solutions by falling ball viscometry
,”
J. Non-Newtonian Fluid Mech.
6
(
2
),
97
109
(
1979
).
47.
Cho
,
Y. I.
,
J. P.
Hartnett
, and
W. Y.
Lee
, “
Non-Newtonian viscosity measurements in the intermediate shear rate range with the falling-ball viscometer
,”
J. Non-Newtonian Fluid Mech.
15
(
1
),
61
74
(
1984
).
48.
Viswanath
,
D. S.
,
T. K.
Ghosh
,
D. H. L.
Prasad
,
N. V. K.
Dutt
, and
K. Y.
Rani
,
Viscosity of Liquids: Theory, Estimation, Experiment, and Data
(Springer, New York,
2007
).
49.
Mezger
,
T. G.
,
The Rheology Handbook
, 4th ed. (Vincentz Network, Hannover, Germany,
2014
).
50.
Schramm
,
G.
,
A Practical Approach to Rheology and Rheometry
(
HAAKE GmbH, Karlaruhe, Germany
,
1994
).
51.
Pitt
,
M. J.
, “
The Marsh funnel and drilling fluid viscosity: A new equation for field use
,”
SPE Drill. Complet.
15
(
1
),
3
6
(
2000
).
52.
Bonnoit
,
C.
,
T.
Darnige
,
E.
Clement
, and
A.
Lindner
, “
Inclined plane rheometry of a dense granular suspension
,”
J. Rheol.
54
(
1
),
65
79
(
2010
).
53.
Landau
,
L. D.
, and
E. M.
Lifshitz
,
Fluid Mechanics: Course of Theoretical Physics
(
Butterworth-Heinemann, Oxford, UK
,
1987
), Vol. 6.
54.
Bognár
,
G.
,
I.
Gombköto
, and
K.
Hriczó
, “
Power-law non-Newtonian fluid flow on an inclined plane
,”
Int. J. Math. Model. Methods Appl. Sci.
6
(
1
),
72
80
(
2012
).
55.
Pascal
,
H.
, “
Gravity flow of a non-Newtonian fluid sheet on an inclined plane
,”
Int. J. Eng. Sci.
29
(
10
),
1307
1313
(
1991
).
56.
Geffrault
,
A.
,
H.
Bessaies-Bey
,
N.
Roussel
, and
P.
Coussot
, “
Instant yield stress measurement from falling drop size: The ‘syringe test’
,”
J. Rheol.
67
(
2
),
305
314
(
2023
).
57.
Coussot
,
P.
, “
Yield stress fluid flows: A review of experimental data
,”
J. Non-Newtonian Fluid Mech.
211
,
31
49
(
2014
).
58.
Roussel
,
N.
, and
P.
Coussot
, “
‘Fifty-cent rheometer’ for yield stress measurements: From slump to spreading flow
,”
J. Rheol.
49
(
3
),
705
718
(
2005
).
59.
Meeten
,
G. H.
, “
Yield stress of structured fluids measured by squeeze flow
,”
Rheol. Acta
39
(
4
),
399
408
(
2000
).
60.
Coussot
,
P.
, and
S.
Boyer
, “
Determination of yield stress fluid behaviour from inclined plane test
,”
Rheol. Acta
34
(
6
),
534
543
(
1995
).
61.
Tanner
,
R. I.
, “
To yield or not to yield- that is the question
,”
J. Non-Newtonian Fluid Mech.
310
,
104941
(
2022
).
62.
Beris
,
A. N.
,
J. A.
Tsamopoulos
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Creeping motion of a sphere through a Bingham plastic
,”
J. Fluid Mech.
158
,
219
244
(
1985
).
63.
Balmforth
,
N. J.
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
64.
Tabuteau
,
H.
,
P.
Coussot
, and
J. R.
de Bruyn
, “
Drag force on a sphere in steady motion through a yield-stress fluid
,”
J. Rheol.
51
(
1
),
125
137
(
2007
).
65.
Lopez
,
W. F.
,
M. F.
Naccache
, and
P. R.
de Souza Mendes
, “
Rising bubbles in yield stress materials
,”
J. Rheol.
62
(
1
),
209
219
(
2018
).
66.
Jossic
,
L.
, and
A.
Magnin
, “
Drag and stability of objects in a yield stress fluid
,”
AIChE J.
47
(
12
),
2666
2672
(
2001
).
67.
Fraggedakis
,
D.
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Yielding the yield-stress analysis: A study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids
,”
Soft Matter
12
(
24
),
5378
5401
(
2016
).
68.
Sarabian
,
M.
,
M. E.
Rosti
,
L.
Brandt
, and
S.
Hormozi
, “
Numerical simulations of a sphere settling in simple shear flows of yield stress fluids
,”
J. Fluid Mech.
896
, A17 (
2020
).
69.
Pourzahedi
,
A.
,
E.
Chaparian
,
A.
Roustaei
, and
I. A.
Frigaard
, “
Flow onset for a single bubble in a yield-stress fluid
,”
J. Fluid Mech.
933
,
A21
(
2022
).
70.
Tan
,
Z.
,
S. A.
Bernal
, and
J. L.
Provis
, “
Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes
,”
Mater. Struct. Constr.
50
(
6
),
235
(
2017
).
71.
Schowalter
,
W. R.
, and
G.
Christensen
, “
Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments
,”
J. Rheol.
42
(
4
),
865
870
(
1998
).
72.
Pashias
,
N.
,
D. V.
Boger
,
J.
Summers
, and
D. J.
Glenister
, “
A fifty cent rheometer for yield stress measurement
,”
J. Rheol.
40
(
6
),
1179
1189
(
1996
).
73.
Clayton
,
S.
,
T. G.
Grice
, and
D. V.
Boger
, “
Analysis of the slump test for on-site yield stress measurement of mineral suspensions
,”
Int. J. Miner. Process.
70
(
1–4
),
3
21
(
2003
).
74.
Ewoldt
,
R. H.
,
P.
Tourkine
,
G. H.
McKinley
, and
A. E.
Hosoi
, “
Controllable adhesion using field-activated fluids
,”
Phys. Fluids
23
(
7
),
073104
(
2011
).
75.
Zhang
,
X.
,
O.
Fadoul
,
E.
Lorenceau
, and
P.
Coussot
, “
Yielding and flow of soft-jammed systems in elongation
,”
Phys. Rev. Lett.
120
(
4
),
048001
(
2018
).
76.
Sen
,
S.
, and
R. H.
Ewoldt
, “
Thixotropic spectra and Ashby-style charts for thixotropy
,”
J. Rheol.
66
(
5
),
1041
1053
(
2022
).
77.
Ewoldt
,
R. H.
, “
Extremely soft: Design with rheologically complex fluids
,”
Soft Robot.
1
(
1
),
12
20
(
2014
).
78.
Lakes
,
R. S.
,
Viscoelastic Solids
(CRC press, FL,
2017
).
79.
Dahlquist
,
C. A.
,
Adhesion: Fundamentals and Practice
(MacLaren, Nottingham (UK), 1966).
80.
Persson
,
B. N. J.
, and
E.
Tosatti
, “
The effect of surface roughness on the adhesion of elastic solids
,”
J. Chem. Phys.
115
(
12
),
5597
5610
(
2001
).
81.
Abbott
,
S.
,
Sticking Together: The Science of Adhesion
(
Royal Society of Chemistry
, London,
2020
).
82.
Tennenbaum
,
M.
,
Z.
Liu
,
D.
Hu
, and
A.
Fernandez-Nieves
, “
Mechanics of fire ant aggregations
,”
Nat. Mater.
15
(
1
),
54
59
(
2016
).
83.
Schrag
,
J. L.
, “
Deviation of velocity gradient profiles from the ‘gap loading’ and ‘surface loading’ limits in dynamic simple shear experiments
,”
Trans. Soc. Rheol.
21
(
3
),
399
413
(
1977
).
84.
Pansino
,
S.
, and
B.
Taisne
, “
Shear wave measurements of a gelatin’s Young’s modulus
,”
Front. Earth Sci.
8
, 171 (
2020
).
85.
Ewoldt
,
R. H.
, and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
(
1
),
413
441
(
2022
).
86.
Tanner
,
R. I.
, “
A theory of die-swell
,”
J. Polym. Sci. Part A-2 Polym. Phys.
8
(
12
),
2067
2078
(
1970
).
87.
Tanner
,
R. I.
, “
A theory of die-swell revisited
,”
J. Non-Newtonian Fluid Mech.
129
(
2
),
85
87
(
2005
).
88.
Mitsoulis
,
E.
, “
50 years of the K-BKZ constitutive relation for polymers
,”
ISRN Polym.: Sci.
2013
, 952379 (
2013
).
89.
Bird
,
R. B.
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of polymeric liquids: Volume 1. Fluid Mechanics
, 2nd ed. (Wiley, New York,
1987
).
90.
Zell
,
A.
,
S.
Gier
,
S.
Rafaï
, and
C.
Wagner
, “
Is there a relation between the relaxation time measured in CaBER experiments and the first normal stress coefficient?
,”
J. Non-Newtonian Fluid Mech.
165
(
19–20
),
1265
1274
(
2010
).
91.
Castillo Sánchez
,
H. A.
,
M. R.
Jovanović
,
S.
Kumar
,
A.
Morozov
,
V.
Shankar
,
G.
Subramanian
, and
H. J.
Wilson
, “
Understanding viscoelastic flow instabilities: Oldroyd-B and beyond
,”
J. Non-Newtonian Fluid Mech.
302
,
104742
(
2022
).
92.
Ferrás
,
L. L.
,
M. L.
Morgado
,
M.
Rebelo
,
G. H.
McKinley
, and
A. M.
Afonso
, “
A generalised Phan–Thien–Tanner model
,”
J. Non-Newtonian Fluid Mech.
269
,
88
99
(
2019
).
93.
More
,
R. V.
,
R.
Patterson
,
E.
Pashkovski
, and
G. H.
McKinley
, “
Rod-climbing rheometry revisited
,”
Soft Matter
19
(
22
),
4073
4087
(
2023
).
94.
Sturges
,
L. D.
, and
D. D.
Joseph
, “
The free surface on a simple fluid between cylinders undergoing torsional oscillations. Part III: Oscillating planes
,”
Arch. Ration. Mech. Anal.
64
(
3
),
245
267
(
1977
).
95.
Beavers
,
G. S.
,
J. Y.
Yoo
, and
D. D.
Joseph
, “
The free surface on a liquid between cylinders rotating at different speeds. Part III
,”
Rheol. Acta
19
(
1
),
19
31
(
1980
).
96.
Maklad
,
O.
, and
R. J.
Poole
, “
A review of the second normal-stress difference; its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions
,”
J. Non-Newtonian Fluid Mech.
292
,
104522
(
2021
).
97.
Doi
,
M.
, and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 1: Brownian motion in the equilibrium state
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1789
1801
(
1978
).
98.
Hassager
,
O.
, “
Do polymers really climb rods?
,”
J. Rheol.
29
(
3
),
361
364
(
1985
).
99.
McKinley
,
G. H.
, and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
(
1
),
375
415
(
2002
).
100.
Graessley
,
W. W.
, and
G.
Ver Strate
, “
A simple method for estimating viscosity of highly viscous liquids
,”
Rubber Chem. Technol.
53
(
4
),
842
848
(
1980
).
101.
Trouton
,
F. T.
, “
On the coefficient of viscous traction and its relation to that of viscosity
,”
Proc. R. Soc. London. Ser., A
77
(
519
),
426
440
(
1906
).
102.
Jones
,
W. M.
,
N. E.
Hudson
, and
J.
Ferguson
, “
The extensional properties of M1 obtained from the stretching of a filament by a falling pendant drop
,”
J. Non-Newtonian Fluid Mech.
35
(
2–3
),
263
276
(
1990
).
103.
Stokes
,
Y. M.
,
E. O.
Tuck
, and
L. W.
Schwartz
, “
Extensional fall of a very viscous fluid drop
,”
Q. J. Mech. Appl. Math.
53
(
4
),
565
582
(
2000
).
104.
Szabo
,
P.
,
G. H.
McKinley
, and
C.
Clasen
, “
Constant force extensional rheometry of polymer solutions
,”
J. Non-Newtonian Fluid Mech.
169–170
,
26
41
(
2012
).
105.
Ewoldt
,
R. H.
, and
G. H.
McKinley
, “
Creep ringing in rheometry or How to deal with oft-discarded data in step stress tests
,”
Rheol. Bull.
76
(
1
), 4–6, 22–24 (
2007
).
106.
McKinley
,
G. H.
, “
Visco-elasto-capillary thinning and break-up of complex fluids
,”
Rheol. Rev.
3
(
05
),
1
48
(
2005
).
107.
McKinley
,
G. H.
, and
A.
Tripathi
, “
How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer
,”
J. Rheol.
44
(
3
),
653
670
(
2000
).
108.
Martínez Narváez
,
C. D. V.
,
J.
Dinic
,
X.
Lu
,
C.
Wang
,
R.
Rock
,
H.
Sun
, and
V.
Sharma
, “
Rheology and pinching dynamics of associative polysaccharide solutions
,”
Macromolecules
54
,
6372
6388
(
2021
).
109.
Gómez-Díaz
,
D.
,
J. M.
Navaza
, and
L. C.
Quintáns-Riveiro
, “
Effect of temperature on the viscosity of honey
,”
Int. J. Food Prop.
12
(
2
),
396
404
(
2009
).
110.
Xie
,
R.
,
S.
Mukherjee
,
A. E.
Levi
,
J. L.
Self
,
H.
Wang
,
M. L.
Chabinyc
, and
C. M.
Bates
, “
Yielding behavior of bottlebrush and linear block copolymers
,”
Macromolecules
54
(
12
),
5636
5647
(
2021
).
111.
Dinic
,
J.
,
L. N.
Jimenez
, and
V.
Sharma
, “
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids
,”
Lab Chip
17
(
3
),
460
473
(
2017
).
112.
Freund
,
J. B.
, and
R. H.
Ewoldt
, “
Quantitative rheological model selection: Good fits versus credible models using Bayesian inference
,”
J. Rheol.
59
(
3
),
667
701
(
2015
).
113.
Wang
,
Y.
, and
R. H.
Ewoldt
, “Thixotropy, anti-thixotropy, and viscoelasticity in hysteresis,”
J. Rheol.
67
(
6
),
1199
1219
(
2023
).
114.
Porath
,
L. E.
,
N.
Ramlawi
,
J.
Huang
,
M. T.
Hossain
,
M.
Derkaloustian
,
R.
Ewoldt
, and
C. M.
Evans
, “Molecular design rules for imparting multiple damping modes in dynamic covalent polymer networks” ChemRxiv: 10.26434/chemrxiv-2023-3sg08 (2023).
You do not currently have access to this content.