The thinning of a cylinder of a polymer solution in a volatile solvent is argued to be controlled by solvent diffusion through a dense polymer layer at the cylinder surface. This naturally leads to the exponential time dependence of cylinder radius that is observed in experiments using a fast camera, such as capillary breakup extensional rheometry (CaBER). The relaxation time is controlled by the thickness of the dense (and often glassy) polymer layer and the diffusion coefficient of solvent through that layer. If correct, this means that while CaBER is very useful for understanding fiber spinning, the relaxation time does not yield a measure of the extensional viscosity of polymer solutions in volatile solvents.
REFERENCES
1.
2.
Imura
, Y.
, R. M. C.
Hogan
, and M.
Jaffe
, Dry spinning of synthetic polymer fibers
, in Advances in Filament Yarn Spinning of Textiles and Polymers
, edited by D.
Zhang
(Woodhead
, Cambridge, 2014
), pp. 187
–202
.3.
Merchiers
, J.
, C. D. V.
Martínez Narváez
, C.
Slykas
, N. K.
Reddy
, and V.
Sharma
, “Evaporation and rheology chart the processability map for centrifugal force spinning
,” Macromolecules
54
(23
), 11061
–11073
(2021
). 4.
Vasudevan
, G.
, and S.
Middleman
, “Momentum, heat, and mass transfer to a continuous cylindrical surface in axial motion
,” AIChE J.
16
(4
), 614
–619
(1970
). 5.
Gou
, Z.
, and A. J.
McHugh
, “Two-dimensional modeling of dry spinning of polymer fibers
,” J. Non-Newtonian Fluid Mech.
118
(2
), 121
–136
(2004
). 6.
Peters
, B. L.
, D. Q.
Pike
, M.
Rubinstein
, and G. S.
Grest
, “Polymers at liquid/vapor interface
,” ACS Macro Lett.
6
(11
), 1191
–1195
(2017
). 7.
Wieland
, M.
, W.
Arne
, N.
Marheineke
, and R.
Wegener
, “Industrial dry spinning processes: Algorithmic for a two-phase fiber model in airflows
,” J. Math. Ind.
10
(1
), 8
(2020
). 8.
9.
Okuzono
, T.
, K.
Ozawa
, and M.
Doi
, “Simple model of skin formation caused by solvent evaporation in polymer solutions
,” Phys. Rev. Lett.
97
(13
), 136103
(2006
). 10.
Okuzono
, T.
, and M.
Doi
, “Effects of elasticity on drying processes of polymer solutions
,” Phys. Rev. E
77
(3
), 030501
(2008
). 11.
Arai
, S.
, and M.
Doi
, “Skin formation and bubble growth during drying process of polymer solution
,” Eur. Phys. J. E
35
(7
), 57
(2012
). 12.
Arai
, S.
, and M.
Doi
, “Anomalous drying dynamics of a polymer solution on a substrate
,” Eur. Phys. J. E
36
(6
), 63
(2013
). 13.
Zhou
, J.
, X.
Man
, Y.
Jiang
, and M.
Doi
, “Structure formation in soft-matter solutions induced by solvent evaporation
,” Adv. Mater.
29
(45
), 1703769
(2017
). 14.
Shimokawa
, Y.
, T.
Kajiya
, K.
Sakai
, and M.
Doi
, “Measurement of the skin layer in the drying process of a polymer solution
,” Phys. Rev. E
84
(5
), 051803
(2011
). 15.
Ramos
, J. I
, “Shell formation in dry spinning
,” in Proceedings of CHT-12 International Symposium on Advances in Computational Heat Transfer
, Bath, England
(2012
).16.
Alfrey
, T.
, E. F.
Gurnee
, and W. G.
Lloyd
, “Diffusion in glassy polymers
,” J. Polym. Sci. Part C: Polym. Symp.
12
(1
), 249
–261
(1966
). 17.
Bargmann
, S.
, A. T.
McBride
, and P.
Steinmann
, “Models of solvent penetration in glassy polymers with an emphasis on case II diffusion. A comparative review
,” Appl. Mech. Rev.
64
(1
), 010803
(2011
). 18.
Gedde
, U. W.
, and M. S.
Hedenqvist
, “Morphology of semicrystalline polymers
,” in Fundamental Polymer Science
, edited by U. W.
Gedde
and M. S.
Hedenqvist
(Springer International Publishing
, Cham
, 2019
), pp. 251
–326
.19.
Shen
, L.
, and Z.
Chen
, “Critical review of the impact of tortuosity on diffusion
,” Chem. Eng. Sci.
62
(14
), 3748
–3755
(2007
). 20.
Tihminlioglu
, F.
, and R. P.
Danner
, “Solvent diffusion in amorphous polymers: Polystyrene–solvent systems
,” J. Polym. Sci., Part B: Polym. Phys.
38
(15
), 1965
–1974
(2000
). 21.
Li
, S. U.
, and J. L.
Gainer
, “Diffusion in polymer solutions
,” Ind. Eng. Chem. Fundam.
7
(3
), 433
–440
(1968
). 22.
Cairncross
, R. A.
, and C. J.
Durning
, “A model for drying of viscoelastic polymer coatings
,” AIChE J.
42
(9
), 2415
–2425
(1996
). 23.
Hennessy
, M. G.
, G. L.
Ferretti
, J. T.
Cabral
, and O. K.
Matar
, “A minimal model for solvent evaporation and absorption in thin films
,” J. Colloid Interface Sci.
488
, 61
–71
(2017
). 24.
Mathues
, W.
, S.
Formenti
, C.
McIlroy
, O. G.
Harlen
, and C.
Clasen
, “CaBER vs ROJER—Different time scales for the thinning of a weakly elastic jet
,” J. Rheol.
62
(5
), 1135
–1153
(2018
). 25.
Dinic
, J.
, and V.
Sharma
, “Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions
,” Proc. Natl. Acad. Sci. U.S.A.
116
, 8766
–8774
(2019
). 26.
Sousa
, P. C.
, E. J.
Vega
, R. G.
Sousa
, J. M.
Montanero
, and M. A.
Alves
, “Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions
,” Rheol. Acta
56
(1
), 11
–20
(2017
). 27.
Campo-Deaño
, L.
, and C.
Clasen
, “The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments
,” J. Non-Newtonian Fluid Mech.
165
(23
), 1688
–1699
(2010
). 28.
Dinic
, J.
, Y.
Zhang
, L. N.
Jimenez
, and V.
Sharma
, “Extensional relaxation times of dilute, aqueous polymer solutions
,” ACS Macro Lett.
4
(7
), 804
–808
(2015
). 29.
Sur
, S.
, and J.
Rothstein
, “Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity
,” J. Rheol.
62
(5
), 1245
–1259
(2018
). 30.
Stelter
, M.
, G.
Brenn
, A. L.
Yarin
, R. P.
Singh
, and F.
Durst
, “Validation and application of a novel elongational device for polymer solutions
,” J. Rheol.
44
(3
), 595
–616
(2000
). 31.
Stelter
, M.
, G.
Brenn
, A. L.
Yarin
, R. P.
Singh
, and F.
Durst
, “Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer
,” J. Rheol.
46
(2
), 507
–527
(2002
). 32.
DiFilippo
, E. L.
, and R. P.
Eganhouse
, “Assessment of PDMS-water partition coefficients: Implications for passive environmental sampling of hydrophobic organic compounds
,” Environ. Sci. Technol.
44
(18
), 6917
–6925
(2010
). 33.
Trotzig
, C.
, S.
Abrahmsén-Alami
, and F. H. J.
Maurer
, “Structure and mobility in water plasticized poly(ethylene oxide)
,” Polymer
48
(11
), 3294
–3305
(2007
). 34.
Yu
, J. H.
, S. V.
Fridrikh
, and G. C.
Rutledge
, “The role of elasticity in the formation of electrospun fibers
,” Polymer
47
(13
), 4789
–4797
(2006
). 35.
Clasen
, C.
, J. P.
Plog
, W.-M.
Kulicke
, M.
Owens
, C.
Macosko
, L. E.
Scriven
, M.
Verani
, and G. H.
McKinley
, “How dilute are dilute solutions in extensional flows?
,” J. Rheol.
50
(6
), 849
–881
(2006
). 36.
Doi
, M.
, and S. F.
Edwards
, The Theory of Polymer Dynamics
(Oxford University Press
, Oxford, 1986
).37.
Rubinstein
, M.
, and R. H.
Colby
, Polymer Physics
(Oxford University Press, Oxford
, 2003
).38.
Graessley
, W. W.
, Polymeric Liquids & Networks: Dynamics and Rheology
(Garland Scientific
, New York, 2008
).39.
Trouton
, F. T.
, “On the coefficient of viscous traction and its relation to that of viscosity
,” Proc. R. Soc. London., Ser. A
77
(519
), 426
–440
(1906
). 40.
Thiévenaz
, V.
, and A.
Sauret
, “Pinch-off of viscoelastic particulate suspensions
,” Phys. Rev. Fluids
6
(6
), L062301
(2021
). 41.
Mackay
, D.
, and I.
Van Wesenbeeck
, “Correlation of chemical evaporation rate with vapor pressure
,” Environ. Sci. Technol.
48
(17
), 10259
–10263
(2014
). 42.
McKinley
, G. H.
, and T.
Sridhar
, “filament-stretching rheometry of complex fluids
,” Annu. Rev. Fluid Mech.
34
(1
), 375
–415
(2002
). 43.
Watanabe
, H.
, O.
Hassager
, Y.
Matsumiya
, and Q.
Huang
, “Extensional rheology of unentangled linear polymer melts
,” in Recent Advances in Rheology: Theory, Biorheology, Suspension and Interfacial Rheology
, edited by D.
De Kee
and A.
Ramachandran
(AIP Publishing, Melville, NY, 2000
).44.
Bach
, A.
, H. K.
Rasmussen
, and O.
Hassager
, “Extensional viscosity for polymer melts measured in the filament stretching rheometer
,” J. Rheol.
47
(2
), 429
–441
(2003
). 45.
Narimissa
, E.
, Q.
Huang
, and M. H.
Wagner
, “Elongational rheology of polystyrene melts and solutions: Concentration dependence of the interchain tube pressure effect
,” J. Rheol.
64
(1
), 95
–110
(2020
). © 2023 The Society of Rheology.
2023
The Society of Rheology
You do not currently have access to this content.